Bill Shipley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5758436/publications.pdf

Version: 2024-02-01

147	18,556	55	126
papers	citations	h-index	g-index
157	157	157	18785
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Nitrogen Addition in a Tibetan Alpine Meadow Increases Intraspecific Variability in Nitrogen Uptake, Leading to Increased Community-level Nitrogen Uptake. Ecosystems, 2022, 25, 172-183.	3.4	3
2	Explaining variation in productivity requires intraspecific variability in plant height among communities. Journal of Plant Ecology, 2022, 15, 310-319.	2.3	1
3	A measure of generalized soil fertility that is largely independent of species identity. Annals of Botany, 2022, 129, 29-36.	2.9	O
4	Multifunctionality in practice: Measuring differences in urban woodland ecosystem properties via functional traits. Urban Forestry and Urban Greening, 2022, 68, 127453.	5.3	4
5	Exploring trait–performance relationships of tree seedlings along experimentally manipulated light and water gradients. Ecology, 2022, 103, e3703.	3.2	6
6	Above―and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America. Journal of Ecology, 2022, 110, 1590-1605.	4.0	8
7	The complexity of trait–environment performance landscapes in a local subtropical forest. New Phytologist, 2021, 229, 1388-1397.	7.3	16
8	Causal hypotheses accounting for correlations between decomposition rates of different mass fractions of leaf litter. Ecology, 2021, 102, e03196.	3.2	13
9	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
10	Testing Piecewise Structural Equations Models in the Presence of Latent Variables and Including Correlated Errors. Structural Equation Modeling, 2021, 28, 582-589.	3.8	4
11	Direct and Indirect Effects of Forest Anthropogenic Disturbance on Above and Below Ground Communities and Litter Decomposition. Ecosystems, 2021, 24, 1716-1737.	3.4	9
12	A multigroup extension to piecewise path analysis. Ecosphere, 2021, 12, e03502.	2.2	5
13	Crop functional diversity drives multiple ecosystem functions during early agroforestry succession. Journal of Applied Ecology, 2021, 58, 1718.	4.0	15
14	Quantifying the relationship linking the communityâ€weighted means of plant traits and soil fertility. Ecology, 2021, 102, e03454.	3.2	10
15	Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra. Journal of Animal Ecology, 2020, 89, 704-715.	2.8	18
16	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
17	Generalized AIC and chiâ€squared statistics for path models consistent with directed acyclic graphs. Ecology, 2020, 101, e02960.	3.2	22
18	Functional markers to predict forest ecosystem properties along a ruralâ€toâ€urban gradient. Journal of Vegetation Science, 2020, 31, 416-428.	2.2	3

#	Article	IF	CITATIONS
19	Simplifying the protocol for the quantification of generalized soil fertility gradients in grassland community ecology. Plant and Soil, 2020, 457, 457-468.	3.7	1
20	Survival, growth and element translocation by 4 plant species growing on acidogenic gold mine tailings in Québec. Ecological Engineering, 2020, 151, 105855.	3.6	5
21	Differences in elemental composition of tailings, soils, and plant tissues following five decades of native plant colonization on a gold mine site in Northwestern Québec. Chemosphere, 2020, 250, 126243.	8.2	13
22	Functional niche occupation and species richness in herbaceous plant communities along experimental gradients of stress and disturbance. Annals of Botany, 2019, 124, 861-867.	2.9	3
23	Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Functional Ecology, 2019, 33, 1771-1784.	3. 6	34
24	The relative importance of abiotic conditions and subsequent land use on the boreal primary succession of acidogenic mine tailings. Ecological Engineering, 2019, 127, 66-74.	3.6	15
25	The measurement and quantification of generalized gradients of soil fertility relevant to plant community ecology. Ecology, 2019, 100, e02549.	3.2	11
26	Community divergence and convergence along experimental gradients of stress and disturbance. Ecology, 2018, 99, 775-781.	3.2	19
27	Habitat filtering determines the functional niche occupancy of plant communities worldwide. Journal of Ecology, 2018, 106, 1001-1009.	4.0	66
28	Leaf and bark functional traits predict resprouting strategies of understory woody species after prescribed fires. Forest Ecology and Management, 2018, 429, 158-174.	3.2	15
29	What makes trait–abundance relationships when both environmental filtering and stochastic neutral dynamics are at play?. Oikos, 2018, 127, 1735-1745.	2.7	24
30	Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS ONE, 2018, 13, e0193130.	2.5	35
31	Predicting habitat affinities of herbaceous dicots to soil wetness based on physiological traits of drought tolerance. Annals of Botany, 2017, 119, 1073-1084.	2.9	15
32	Predicting habitat affinities of plant species using commonly measured functional traits. Journal of Vegetation Science, 2017, 28, 1082-1095.	2.2	38
33	Shade tolerance and the functional trait: demography relationship in temperate and boreal forests. Functional Ecology, 2017, 31, 821-830.	3.6	16
34	Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos, 2017, 126, 959-971.	2.7	30
35	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	4.0	114
36	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	3.6	330

#	Article	IF	CITATIONS
37	An experimental test of CSR theory using a globally calibrated ordination method. PLoS ONE, 2017, 12, e0175404.	2.5	34
38	Recasting the dynamic equilibrium model through a functional lens: the interplay of traitâ€based community assembly and climate. Journal of Ecology, 2016, 104, 781-791.	4.0	16
39	Occupancy and overlap in trait space along a successional gradient in Mediterranean old fields. American Journal of Botany, 2016, 103, 1050-1060.	1.7	22
40	Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada. Geoderma, 2016, 273, 25-31.	5.1	39
41	Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 2016, 180, 923-931.	2.0	335
42	Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews, 2016, 24, 164-186.	4. 5	146
43	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
44	A global metaâ€analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18, 1406-1419.	6.4	768
45	Simple measures of climate, soil properties and plant traits predict nationalâ€scale grassland soil carbon stocks. Journal of Applied Ecology, 2015, 52, 1188-1196.	4.0	79
46	Describing, explaining and predicting community assembly: a convincing traitâ€based case study. Journal of Vegetation Science, 2015, 26, 615-616.	2.2	8
47	A traits-based test of the home-field advantage in mixed-species tree litter decomposition. Annals of Botany, 2015, 116, 781-788.	2.9	28
48	Tree communities rapidly alter soil microbial resistance and resilience to drought. Functional Ecology, 2015, 29, 570-578.	3.6	43
49	Testing models for the leaf economics spectrum with leaf and whole-plant traits in <i>Arabidopsis thaliana</i> . AoB PLANTS, 2015, 7, plv049.	2.3	43
50	The relationship between functional dispersion of mixedâ€species leaf litter mixtures and species' interactions during decomposition. Oikos, 2015, 124, 1050-1057.	2.7	23
51	<scp>CATS</scp> regression – a modelâ€based approach to studying traitâ€based community assembly. Methods in Ecology and Evolution, 2015, 6, 389-398.	5.2	75
52	Can the biomass-ratio hypothesis predict mixed-species litter decomposition along a climatic gradient?. Annals of Botany, 2014, 113, 843-850.	2.9	21
53	Explaining ontogenetic shifts in root–shoot scaling with transient dynamics. Annals of Botany, 2014, 114, 513-524.	2.9	15
54	Measuring and interpreting traitâ€based selection versus metaâ€community effects during local community assembly. Journal of Vegetation Science, 2014, 25, 55-65.	2.2	17

#	Article	IF	CITATIONS
55	Predicting invertebrate herbivory from plant traits: Polycultures show strong nonadditive effects. Ecology, 2013, 94, 1499-1509.	3.2	39
56	Interâ€specific and intraâ€specific trait variation along short environmental gradients in an oldâ€growth temperate forest. Journal of Vegetation Science, 2013, 24, 419-428.	2.2	150
57	The AIC model selection method applied to path analytic models compared using a dâ€separation test. Ecology, 2013, 94, 560-564.	3.2	389
58	Using the biomass-ratio and idiosyncratic hypotheses to predict mixed-species litter decomposition. Annals of Botany, 2013, 111, 135-141.	2.9	20
59	Linking plant and insect traits to understand multitrophic community structure in arid steppes. Functional Ecology, 2013, 27, 786-792.	3.6	31
60	Traitâ€based climate change predictions of plant community structure in arid steppes. Journal of Ecology, 2013, 101, 484-492.	4.0	40
61	Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Annals of Botany, 2012, 109, 287-297.	2.9	48
62	Disturbance and resource availability act differently on the same suite of plant traits: revisiting assembly hypotheses. Ecology, 2012, 93, 825-835.	3.2	21
63	Abiotic drivers and plant traits explain landscapeâ€scale patterns in soil microbial communities. Ecology Letters, 2012, 15, 1230-1239.	6.4	511
64	Quantifying the importance of local nicheâ€based and stochastic processes to tropical tree community assembly. Ecology, 2012, 93, 760-769.	3.2	86
65	Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance. Annals of Botany, 2012, 109, 1149-1157.	2.9	29
66	Predicting invertebrate herbivory from plant traits: evidence from 51 grassland species in experimental monocultures. Ecology, 2012, 93, 2674-2682.	3.2	80
67	Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species. Plant and Soil, 2012, 355, 41-49.	3.7	34
68	Which plant traits determine abundance under longâ€term shifts in soil resource availability and grazing intensity?. Journal of Ecology, 2012, 100, 662-677.	4.0	107
69	Functional structure of an arid steppe plant community reveals similarities with Grime's Câ€Sâ€R theory. Journal of Vegetation Science, 2012, 23, 208-222.	2.2	52
70	Quantifying trait selection driving community assembly: a test in herbaceous plant communities under contrasted land use regimes. Oikos, 2012, 121, 1103-1111.	2.7	27
71	Is leaf dry matter content a better predictor of soil fertility than specific leaf area?. Annals of Botany, 2011, 108, 1337-1345.	2.9	219
72	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002

#	Article	IF	Citations
73	A strong test of a maximum entropy model of trait-based community assembly. Ecology, 2011, 92, 507-517.	3.2	56
74	Secondary sexual characters signal fighting ability and determine social rank in Alpine ibex (Capra) Tj ETQq0 0 C) rgBT/Ove	erlock 10 Tf 50
75	Community assembly, natural selection and maximum entropy models. Oikos, 2010, 119, 604-609.	2.7	50
76	Plant traits, species pools and the prediction of relative abundance in plant communities: a maximum entropy approach. Journal of Vegetation Science, 2010, 21, 318-331.	2.2	44
77	Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science, 2010, 21, 1014-1024.	2.2	69
78	The leaf economics spectrum and the prediction of photosynthetic light–response curves. Functional Ecology, 2010, 24, 263-272.	3.6	65
79	Plasticity in relative growth rate after a reduction in nitrogen availability is related to root morphological and physiological responses. Annals of Botany, 2010, 106, 617-625.	2.9	17
80	Interspecific correlates of plasticity in relative growth rate following a decrease in nitrogen availability. Annals of Botany, 2010, 105, 333-339.	2.9	18
81	Inferential permutation tests for maximum entropy models in ecology. Ecology, 2010, 91, 2794-2805.	3.2	16
82	Context-dependent Changes in the Weighting of Environmental Cues That Initiate Breeding in a Temperate Passerine, the Corsican Blue Tit (<i>Cyanistes caeruleus</i>). Auk, 2010, 127, 129-139.	1.4	27
83	Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany, 2010, 88, 30-38.	1.0	36
84	Relationship between postâ€fire regeneration and leaf economics spectrum in Mediterranean woody species. Functional Ecology, 2009, 23, 103-110.	3.6	25
85	Thermoregulation and habitat selection in wood turtles <i>Glyptemys insculpta</i> chasing the sun slowly. Journal of Animal Ecology, 2009, 78, 1023-1032.	2.8	87
86	Limitations of entropy maximization in ecology: a reply to Haegeman and Loreau. Oikos, 2009, 118, 152-159.	2.7	26
87	Trivial and nonâ€trivial applications of entropy maximization in ecology: Shipley's reply. Oikos, 2009, 118, 1279-1280.	2.7	8
88	Confirmatory path analysis in a generalized multilevel context. Ecology, 2009, 90, 363-368.	3.2	721
89	A Correction Note on "A New Inferential Test for Path Models Based on Directed Acyclic Graphs― Structural Equation Modeling, 2009, 16, 537-538.	3.8	4
90	"Diminishing returns" in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8891-8896.	7.1	177

#	Article	IF	Citations
91	Common paths link food abundance and ectoparasite loads to physiological performance and recruitment in nestling blue tits. Functional Ecology, 2007, 21, 947-955.	3.6	47
92	Forest Floor Bacterial Community Composition and Catabolic Profiles in Relation to Landscape Features in Québec's Southern Boreal Forest. Microbial Ecology, 2007, 54, 10-20.	2.8	30
93	FUNDAMENTAL TRADE-OFFS GENERATING THE WORLDWIDE LEAF ECONOMICS SPECTRUM. Ecology, 2006, 87, 535-541.	3.2	422
94	From Plant Traits to Plant Communities: A Statistical Mechanistic Approach to Biodiversity. Science, 2006, 314, 812-814.	12.6	517
95	A STRUCTURAL EQUATION MODEL TO INTEGRATE CHANGES IN FUNCTIONAL STRATEGIES DURING OLD-FIELD SUCCESSION. Ecology, 2006, 87, 504-517.	3.2	151
96	Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters, 2006, 9, 1061-1067.	6.4	172
97	Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology, 2006, 20, 565-574.	3.6	242
98	Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology, 2006, 20, 21-30.	3.6	194
99	Effect of chitosan and a biocontrol streptomycete on field and potato tuber bacterial communities. BioControl, 2006, 51, 533-546.	2.0	45
100	Refining numerical approaches for analyzing soil microbial community catabolic profiles based on carbon source utilization patterns. Soil Biology and Biochemistry, 2006, 38, 629-632.	8.8	17
101	Soil factors controlling mineral N uptake by Picea engelmannii seedlings: the importance of gross NH 4 + production rates. New Phytologist, 2005, 165, 791-800.	7. 3	12
102	Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Functional Ecology, 2005, 19, 602-615.	3.6	95
103	Mineral nitrogen and microbial dynamics in the forest floor of clearcut or partially harvested successional boreal forest stands. Plant and Soil, 2005, 271, 27-37.	3.7	20
104	Path models for the abscission of reproductive structures in three contrasting cultivars of faba bean (Vicia faba). Canadian Journal of Botany, 2005, 83, 264-271.	1.1	5
105	Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Annals of Botany, 2005, 96, 1129-1136.	2.9	374
106	Analysing the allometry of multiple interacting traits. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6, 235-241.	2.7	43
107	Effects of nutrient availability on the production of pentaynene, a secondary compound related to defense, in Rudbeckia hirta. Plant Species Biology, 2003, 18, 85-89.	1.0	6
108	Testing Recursive Path Models With Correlated Errors Using D-Separation. Structural Equation Modeling, 2003, 10, 214-221.	3.8	37

#	Article	IF	Citations
109	Another one bites the dust: Does incisor-arcade size affect mass gain and survival in grazing ungulates?. Canadian Journal of Zoology, 2003, 81, 1623-1629.	1.0	5
110	Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability. Ecoscience, 2003, 10, 74-79.	1.4	37
111	From biological hypotheses to structural equation models: the imperfection of causal translation. , 2003, , 194-211.		4
112	Start and Stop Rules for Exploratory Path Analysis. Structural Equation Modeling, 2002, 9, 554-561.	3.8	8
113	A Modern Tool for Classical Plant Growth Analysis. Annals of Botany, 2002, 90, 485-488.	2.9	370
114	Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 2002, 153, 359-364.	7.3	182
115	The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 2002, 16, 326-331.	3.6	448
116	Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology, 2002, 16, 682-689.	3.6	205
117	Direct and Indirect Relationships Between Specific Leaf Area, Leaf Nitrogen and Leaf Gas Exchange. Effects of Irradiance and Nutrient Supply. Annals of Botany, 2001, 88, 915-927.	2.9	148
118	The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Ecoscience, 2000, 7, 183-194.	1.4	57
119	Plasticity in relative growth rate and its components following a change in irradiance. Plant, Cell and Environment, 2000, 23, 1207-1216.	5.7	48
120	Title is missing!. Statistics and Computing, 2000, 10, 253-257.	1.5	7
121	A New Inferential Test for Path Models Based on Directed Acyclic Graphs. Structural Equation Modeling, 2000, 7, 206-218.	3.8	308
122	Book Review of Causality: Models, Reasoning, and Inference. Structural Equation Modeling, 2000, 7, 637-639.	3.8	11
123	Testing Causal Explanations in Organismal Biology: Causation, Correlation and Structural Equation Modelling. Oikos, 1999, 86, 374.	2.7	78
124	Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology, 1999, 13, 611-622.	3.6	69
125	Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist, 1999, 143, 131-142.	7.3	105
126	Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell and Environment, 1999, 22, 447-459.	5.7	186

#	Article	IF	CITATIONS
127	Do plant species with high relative growth rates have poorer chemical defences?. Functional Ecology, 1999, 13, 819-827.	3.6	50
128	Interacting determinants of interspecific relative growth: Empirical patterns and a theoretical explanation. Ecoscience, 1999, 6, 286-296.	1.4	34
129	Experimental Evidence That Interspecific Competitive Asymmetry Increases with Soil Productivity. Oikos, 1997, 80, 253.	2.7	71
130	Exploratory Path Analysis With Applications in Ecology and Evolution. American Naturalist, 1997, 149, 1113-1138.	2.1	105
131	Regression Smoothers for Estimating Parameters of Growth Analyses. Annals of Botany, 1996, 78, 569-576.	2.9	29
132	Joint effects of maternal and offspring sizes on clutch mass and fecundity in plants and animals. Ecoscience, 1996, 3, 173-182.	1.4	18
133	The effects of aluminum on Picearubens:factorial experiments using sand culture. Canadian Journal of Forest Research, 1995, 25, 8-17.	1.7	8
134	Plant Competition in Relation to Neighbor Biomass: An Intercontinental Study with POA Pratensis. Ecology, 1994, 75, 1753-1760.	3.2	120
135	Evaluating the Evidence for Competitive Hierarchies in Plant Communities. Oikos, 1994, 69, 340.	2.7	94
136	A Null Model for Competitive Hierarchies in Competition Matrices. Ecology, 1993, 74, 1693-1699.	3.2	75
137	The Allometry of Seed Production in Herbaceous Angiosperms. American Naturalist, 1992, 139, 467-483.	2.1	195
138	Interacting effects of nutrients, pH - Al and elevated CO2 on the growth of red spruce (Picea rubens) Tj ETQq0 0	0 r <u>g</u> BT /Ov	verlock 10 Tf
139	Mechanisms producing plant zonation along a water depth gradient: a comparison with the exposure gradient. Canadian Journal of Botany, 1991, 69, 1420-1424.	1.1	80
140	A Model of Species Density in Shoreline Vegetation. Ecology, 1991, 72, 1658-1667.	3.2	64
141	The Seduction by Mechanism: A Reply to Tilman. American Naturalist, 1991, 138, 1276-1282.	2.1	25
142	A Test of the Tilman Model of Plant Strategies: Relative Growth Rate and Biomass Partitioning. American Naturalist, 1990, 136, 139-153.	2.1	115
143	Competitive Hierarchies in Herbaceous Plant Communities. Oikos, 1989, 54, 234.	2.7	268
144	Why is <i>Rhinanthus minor</i> (Scrophulariaceae) such a good invader?. Canadian Journal of Botany, 1987, 65, 2373-2379.	1.1	61

BILL SHIPLEY

#	Article	IF	CITATIONS
145	The individualistic and community-unit concepts as falsifiable hypotheses. Plant Ecology, 1987, 69, 47-55.	1.2	167
146	The relationship between dynamic game theory and the lotka-volterra competition equations. Journal of Theoretical Biology, 1987, 125, 121-123.	1.7	5
147	The systematic position of the genus Rhinanthus (Scrophulariaceae) in North America. Canadian Journal of Botany, 1986, 64, 1443-1449.	1.1	6