

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575831/publications.pdf Version: 2024-02-01

LIN VI

#	Article	IF	CITATIONS
1	Tuning composite solid-state electrolyte interface to improve the electrochemical performance of lithium-oxygen battery. Green Energy and Environment, 2023, 8, 1195-1204.	4.7	8
2	Dendrite-free and anti-corrosion Zn metal anode enabled by an artificial layer for high-performance Zn ion capacitor. Chinese Chemical Letters, 2022, 33, 3936-3940.	4.8	27
3	Host-guest supramolecular interaction behavior at the interface between anode and electrolyte for long life Zn anode. Journal of Energy Chemistry, 2022, 69, 237-243.	7.1	34
4	High-efficient carbon dioxide-to-formic acid conversion on bimetallic PbIn alloy catalysts with tuned composition and morphology. Chemosphere, 2022, 293, 133595.	4.2	11
5	Towards Understanding the Corrosion Behavior of Zincâ€Metal Anode in Aqueous Systems: From Fundamentals to Strategies. Batteries and Supercaps, 2022, 5, .	2.4	44
6	A Moistureâ€Assisted Rechargeable Mgâ^'CO ₂ Battery. Angewandte Chemie, 2022, 134, .	1.6	5
7	A Moistureâ€Assisted Rechargeable Mgâ^'CO ₂ Battery. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
8	Electronic structural modulation of bismuth catalysts induced by sulfur and oxygen co-doping for promoting CO ₂ electroreduction. Dalton Transactions, 2022, 51, 7223-7233.	1.6	3
9	Zeolitic imidazolate framework-derived composites with SnO ₂ and ZnO phase components for electrocatalytic carbon dioxide reduction. Dalton Transactions, 2022, 51, 7274-7283.	1.6	8
10	Fluorine-free superhydrophobic coating with mechanical interlocking and high corrosion resistance. Progress in Organic Coatings, 2022, 168, 106871.	1.9	6
11	2022 Roadmap on aqueous batteries. JPhys Energy, 2022, 4, 041501.	2.3	8
12	Advanced aqueous batteries: Status and challenges. MRS Energy & Sustainability, 2022, 9, 106-128.	1.3	5
13	Tin-based metal organic framework catalysts for high-efficiency electrocatalytic CO2 conversion into formate. Journal of Colloid and Interface Science, 2022, 626, 836-847.	5.0	26
14	Nanoporous structured <scp>Snâ€MWCNT</scp> /Cu electrodes fabricated by electrodeposition–chemical dezincification for catalytic <scp>CO₂</scp> reduction. International Journal of Energy Research, 2021, 45, 6273-6284.	2.2	2
15	Metal chalcogenide-associated catalysts enabling CO ₂ electroreduction to produce low-carbon fuels for energy storage and emission reduction: catalyst structure, morphology, performance, and mechanism. Journal of Materials Chemistry A, 2021, 9, 2526-2559.	5.2	26
16	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
17	Surface-tuned two-dimension MXene scaffold for highly reversible zinc metal anode. Chinese Chemical Letters, 2021, 32, 2899-2903.	4.8	33
18	Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode. Nano-Micro Letters, 2021, 13, 79.	14.4	117

#	Article	IF	CITATIONS
19	Synthesis of SnS2 Ultrathin Nanosheets as Anode Materials for Potassium Ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 311-317.	1.3	37
20	Ti ₃ C ₂ MXene-Encapsulated NiFe-LDH Hybrid Anode for High-Performance Lithium-Ion Batteries and Capacitors. ACS Applied Energy Materials, 2021, 4, 7821-7828.	2.5	44
21	Superior anti-corrosion performance on Cu substrate achieved by dense polypropylene coating with ultrahigh inhibition efficiency deposited via the environmental-friendly method. Corrosion Science, 2021, 191, 109783.	3.0	15
22	Novel Bi, BiSn, Bi ₂ Sn, Bi ₃ Sn, and Bi ₄ Sn Catalysts for Efficient Electroreduction of CO ₂ to Formic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 6806-6814.	1.8	32
23	Simply and effectively electrodepositing Bi-MWCNT-COOH composite on Cu electrode for efficient electrocatalytic CO2 reduction to produce HCOOH. Journal of CO2 Utilization, 2020, 37, 106-112.	3.3	36
24	Rechargeable Zn–MnO ₂ batteries: advances, challenges and perspectives. Nanotechnology, 2020, 31, 122001.	1.3	76
25	Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Materials Today Energy, 2020, 18, 100563.	2.5	82
26	2020 Roadmap on Zinc Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3696-3708.	1.7	26
27	An experimental study of electroreduction of CO2 to HCOOH on SnO2/C in presence of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) and anions (HCO3â^', Clâ^', Brâ^' and Iâ^'). Chinese Journal of Chemical Engineering, 2020, 28, 2549-2554.	1.7	11
28	Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. ChemSusChem, 2020, 13, 2160-2185.	3.6	121
29	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Znâ€Based Batteries. Advanced Functional Materials, 2020, 30, 1908528.	7.8	523
30	Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries. Nano Energy, 2020, 70, 104504.	8.2	61
31	Uniform Li Deposition Sites Provided by Atomic Layer Deposition for the Dendrite-free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 19530-19538.	4.0	30
32	Nitrogen and atomic Ni co-doped carbon material for sodium ion storage. Chemical Communications, 2020, 56, 5182-5185.	2.2	20
33	Highly efficient and durable aqueous electrocatalytic reduction of CO ₂ to HCOOH with a novel bismuth–MOF: experimental and DFT studies. Journal of Materials Chemistry A, 2020, 8, 9776-9787.	5.2	73
34	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309
35	Utilization of carbon nanotube and graphene in electrochemical CO2 reduction. Biointerface Research in Applied Chemistry, 2020, 10, 5815-5827.	1.0	8
36	Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochemical Energy Reviews, 2019, 2, 574-605.	13.1	238

#	Article	IF	CITATIONS
37	Simultaneous removal of lead(II) and nitrate from water at low voltage. Journal of Water Process Engineering, 2019, 32, 100940.	2.6	7
38	Efficient nitrate removal from water using selected cathodes and Ti/PbO2 anode: Experimental study and mechanism verification. Separation and Purification Technology, 2019, 216, 158-165.	3.9	43
39	Non-noble Iron Group (Fe, Co, Ni)-Based Oxide Electrocatalysts for Aqueous Zinc–Air Batteries: Recent Progress, Challenges, and Perspectives. Organometallics, 2019, 38, 1186-1199.	1.1	51
40	Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Science Bulletin, 2018, 63, 376-384.	4.3	75
41	Li ₂ CO ₃ -free Li–O ₂ /CO ₂ battery with peroxide discharge product. Energy and Environmental Science, 2018, 11, 1211-1217.	15.6	120
42	Solar-driven efficient Li2O2 oxidation in solid-state Li-ion O2 batteries. Energy Storage Materials, 2018, 11, 170-175.	9.5	51
43	High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. Joule, 2018, 2, 2117-2132.	11.7	227
44	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy and Environmental Science, 2018, 11, 3075-3095.	15.6	324
45	Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes. Journal of CO2 Utilization, 2018, 27, 48-59.	3.3	58
46	Status and prospects of polymer electrolytes for solid-state Li–O ₂ (air) batteries. Energy and Environmental Science, 2017, 10, 860-884.	15.6	211
47	Boosting the Cycle Life of Li–O ₂ Batteries at Elevated Temperature by Employing a Hybrid Polymer–Ceramic Solid Electrolyte. ACS Energy Letters, 2017, 2, 1378-1384.	8.8	71
48	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie - International Edition, 2017, 56, 4960-4964.	7.2	133
49	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie, 2017, 129, 5042-5046.	1.6	31
50	Unraveling the Complex Role of Iodide Additives in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 1869-1878.	8.8	102
51	Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. Joule, 2017, 1, 359-370.	11.7	325
52	A Superâ€Hydrophobic Quasiâ€Solid Electrolyte for Liâ€O ₂ Battery with Improved Safety and Cycle Life in Humid Atmosphere. Advanced Energy Materials, 2017, 7, 1601759.	10.2	128
53	A long-life lithium–sulphur battery by integrating zinc–organic framework based separator. Journal of Materials Chemistry A, 2016, 4, 16812-16817.	5.2	121
54	A Unique Hybrid Quasi‣olid‣tate Electrolyte for Li–O ₂ Batteries with Improved Cycle Life and Safety. ChemSusChem, 2016, 9, 2391-2396.	3.6	62

#	Article	IF	CITATIONS
55	A long-life lithium ion oxygen battery based on commercial silicon particles as the anode. Energy and Environmental Science, 2016, 9, 3262-3271.	15.6	89
56	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Materials, 2016, 8, e266-e266.	3.8	101
57	Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy and Environmental Science, 2016, 9, 2978-3006.	15.6	368
58	Stabilization of polysulfides via lithium bonds for Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 5406-5409.	5.2	105
59	Interfacial construction of Li ₂ O ₂ for a performance-improved polymer Li–O ₂ battery. Journal of Materials Chemistry A, 2016, 4, 2403-2407.	5.2	40
60	A Highâ€Voltage and Ultralongâ€Life Sodium Full Cell for Stationary Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 11701-11705.	7.2	126
61	Facile in Situ Preparation of Graphitic-C ₃ N ₄ @carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2015, 7, 10823-10827.	4.0	75
62	A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22012-22016.	5.2	54
63	Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li–Air Battery. ACS Applied Materials & Interfaces, 2015, 7, 23798-23804.	4.0	89
64	Reducing the charging voltage of a Li–O ₂ battery to 1.9 V by incorporating a photocatalyst. Energy and Environmental Science, 2015, 8, 2664-2667.	15.6	147
65	Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1300600.	10.2	78
66	Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy and Environmental Science, 2014, 7, 705-714.	15.6	136
67	In-situ generation of Li2FeSiO4/C nanocomposite as cathode material for lithium ion battery. Electrochimica Acta, 2014, 133, 564-569.	2.6	28
68	Comparison of thermal stability between micro- and nano-sized materials for lithium-ion batteries. Electrochemistry Communications, 2013, 33, 115-118.	2.3	30
69	Graphite-anchored lithium vanadium oxide as anode of lithium ion battery. Electrochimica Acta, 2013, 106, 534-540.	2.6	14
70	A reduced graphene oxide/Cu6Sn5 nanocomposite with enhanced cycling stability for lithium storage. Nanotechnology, 2013, 24, 424010.	1.3	4
71	Synthesis and electrochemical characteristics of NASICON-structured LiSn2(PO4)3 anode material for lithium-ion batteries. Journal of Power Sources, 2012, 217, 77-84.	4.0	18
72	Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 1058-1062.	2.4	10

#	Article	IF	CITATIONS
73	Recent Progress in Aqueous Lithiumâ€lon Batteries. Advanced Energy Materials, 2012, 2, 830-840.	10.2	486
74	Preparation and performance of porous titania with a trimodal pore system as anode of lithium ion battery. Journal of Solid State Electrochemistry, 2012, 16, 443-448.	1.2	17
75	TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries. Rare Metals, 2011, 30, 589-594.	3.6	22
76	Arrayed porous iron-doped TiO2 as photoelectrocatalyst with controllable pore size. International Journal of Hydrogen Energy, 2011, 36, 8167-8172.	3.8	35
77	Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. Journal of Power Sources, 2011, 196, 6670-6675.	4.0	107
78	Performance Improvement of Polyethylene-Supported PAMS Electrolyte Using Urea as Foaming Agent. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 1689-1694.	2.2	5
79	Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries. Rare Metals, 2010, 29, 505-510.	3.6	5
80	Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries. Electrochemistry Communications, 2010, 12, 1253-1256.	2.3	97
81	Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries. Electrochimica Acta, 2009, 54, 6396-6402.	2.6	60
82	Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. Journal of Physical Chemistry B, 2009, 113, 16596-16602.	1.2	221
83	Facile synthesis and compositionâ€ŧuning of bimetallic <scp>PbCd</scp> nanoparticles as superior <scp> CO ₂ â€ŧoâ€HCOOH </scp> electrocatalysts. International Journal of Energy Research, 0, , .	2.2	2