List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5757064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZIF-8@ZIF-67 Derived Co/NPHC Catalysts for Efficient and Selective Hydrogenation of Nitroarenes. Catalysis Letters, 2023, 153, 824-835.	1.4	9
2	Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Research, 2022, 15, 1993-2002.	5.8	20
3	Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Research, 2022, 15, 3959-3963.	5.8	18
4	Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Research, 2022, 15, 3980-3990.	5.8	20
5	Combination of Fe(II)-induced oxygen deficiency and metal doping strategy for construction of high efficiency water oxidation electrocatalysts under industrial-scale current density. Chemical Engineering Journal, 2022, 435, 135048.	6.6	6
6	Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Research, 2022, 15, 7320-7328.	5.8	66
7	Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy, 2021, 80, 105467.	8.2	114
8	One-dimensional nitrogen doped porous carbon nano-array arranged by carbon nanotubes for electrochemical sensing ascorbic acid, dopamine and uric acid simultaneously. Nanotechnology, 2021, 32, 255601.	1.3	11
9	A facile solution approach for fabrication of small-sized MoSe2 with few layers as an efficient hydrogen evolution electrocatalyst. Frontiers of Materials Science, 2021, 15, 448-455.	1.1	2
10	Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction. Science China Materials, 2021, 64, 2729-2738.	3.5	28
11	Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteriaâ€infected wound therapy. Bioactive Materials, 2021, 6, 4389-4401.	8.6	194
12	Single-atom Fe–N4 site for the hydrogenation of nitrobenzene: theoretical and experimental studies. Dalton Transactions, 2021, 50, 7995-8001.	1.6	2
13	Self-assembled multifunctional Fe3O4 hierarchical microspheres: high-efficiency lithium-ion battery materials and hydrogenation catalysts. Science China Materials, 2021, 64, 1058-1070.	3.5	9
14	Phaseâ€Controllable Synthesis of Multifunctional 1Tâ€MoSe ₂ Nanostructures: Applications in Lithiumâ€Ion Batteries, Electrocatalytic Hydrogen Evolution, and the Hydrogenation Reaction. ChemElectroChem, 2021, 8, 4148-4155.	1.7	4
15	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	7.2	263
16	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	1.6	45
17	Solvothermal Synthesis of Bi Nanoparticles/Reduced Graphene Oxide Composites and Their Catalytic Applications for Dye Degradation and Fast Aromatic Nitro Compounds Hydrogenation. Chemistry Letters, 2020, 49, 318-322.	0.7	5
18	Graphite Carbon Nitrideâ€Assisted Ruthenium/Reduced Graphene Oxide as Highâ€Efficiency Electrocatalyst for Hydrogen Evolution Reaction under Alkaline Conditions. ChemElectroChem, 2020, 7, 3269-3273.	1.7	4

#	Article	IF	CITATIONS
19	Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chemical Communications, 2020, 56, 8916-8919.	2.2	18
20	In situ growth of MoSe2 nanosheets array on Mo foil: An efficient and durable hydrogen evolution electrocatalyst. Materials Letters, 2020, 272, 127828.	1.3	10
21	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	5.8	253
22	Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & Interfaces, 2019, 11, 33819-33824.	4.0	74
23	An MOF-derived copper@nitrogen-doped carbon composite: the synergistic effects of N-types and copper on selective CO ₂ electroreduction. Catalysis Science and Technology, 2019, 9, 5668-5675.	2.1	57
24	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	5.8	326
25	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	6.6	571
26	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	6.6	945
27	Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018, 140, 2610-2618.	6.6	1,556
28	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 44201-44208.	4.0	71
29	lr/g-C ₃ N ₄ /Nitrogen-Doped Graphene Nanocomposites as Bifunctional Electrocatalysts for Overall Water Splitting in Acidic Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 39161-39167.	4.0	80
30	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie, 2018, 130, 11432-11436.	1.6	24
31	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	7.2	165
32	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	5.8	118
33	Quantitative Study of Charge Carrier Dynamics in Well-Defined WO ₃ Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis. Journal of the American Chemical Society, 2018, 140, 9078-9082.	6.6	209
34	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	1.6	51
35	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	7.2	455
36	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	11.1	427

#	Article	IF	CITATIONS
37	Efficient Electrocatalyst for Glucose and Ethanol Based on Cu/Ni/Nâ€Doped Graphene Hybrids. ChemElectroChem, 2017, 4, 1419-1428.	1.7	18
38	Cu@Ni core–shell nanoparticles/reduced graphene oxide nanocomposites for nonenzymatic glucose sensor. RSC Advances, 2017, 7, 21128-21135.	1.7	39
39	One-dimensional hierarchical structured MoS2with an ordered stacking of nanosheets: a facile template-free hydrothermal synthesis strategy and application as an efficient hydrogen evolution electrocatalyst. CrystEngComm, 2017, 19, 218-223.	1.3	5
40	A facile one-pot hydrothermal synthesis of Co ₉ S ₈ /Ni ₃ 2 nanoflakes for supercapacitor application. RSC Advances, 2016, 6, 54142-54148.	1.7	19
41	A facile template-free approach for fabrication of flower-like CdS: the evolutionary process of the structure and the performance of photocatalytic activity. CrystEngComm, 2016, 18, 4681-4687.	1.3	10
42	Rhombic dodecahedral Ag ₃ PO ₄ architectures: controllable synthesis, formation mechanism and photocatalytic activity. CrystEngComm, 2016, 18, 1618-1624.	1.3	17
43	Ce 3+ â€doped neodymium phosphate nanostructures: controllable synthesis, influencing factors, and photoluminescence properties. Micro and Nano Letters, 2016, 11, 57-61.	0.6	2
44	Poly(furfuryl alcohol) nanospheres: a facile synthesis approach based on confinement effect of polymer and a template for synthesis of metal oxide hollow nanospheres. Bulletin of Materials Science, 2015, 38, 1859-1865.	0.8	2
45	Synthesis of Niâ€riched NiOâ€Co 3 O 4 sheetâ€like nanocomposites and their application in supercapacitors. Micro and Nano Letters, 2015, 10, 9-11.	0.6	4
46	Sacrificial template synthesis of (Co _x Ni _{1â^²x}) _{0.85} Se nanostructures with different morphologies for reduction of 4-nitrophenol. CrystEngComm, 2015, 17, 734-739.	1.3	8
47	Preparation of Ag 2 SO 3 subâ€microparticles with high visibleâ€light photocatalytic activity. Micro and Nano Letters, 2014, 9, 417-420.	0.6	9
48	Conversion of AgCl nanocubes to Ag/AgCl nanohybrids via solid–liquid reaction for surfaceâ€enhanced Raman scattering detection. Micro and Nano Letters, 2014, 9, 297-301.	0.6	6
49	Controllable synthesis of zinc tetraphenylporphyrin microcrystals by a facile, fast and surfactantâ€free process. Micro and Nano Letters, 2014, 9, 797-799.	0.6	0
50	Co _{0.85} Se bundle-like nanostructure catalysts for hydrogenation of 4-nitrophenol to 4-aminophenol. New Journal of Chemistry, 2014, 38, 6147-6151.	1.4	24
51	Controllable synthesis and property of graphene-based magnetic metal nanostructures. Solid State Sciences, 2014, 38, 90-96.	1.5	3
52	Synthesis of graphene oxide–Ag ₂ CO ₃ composites with improved photoactivity and anti-photocorrosion. CrystEngComm, 2014, 16, 730-736.	1.3	80
53	Self-assembly of single-crystalline α-Fe2O3nanoplates into columnar superstructures: controllable synthesis, growth mechanism, and properties. CrystEngComm, 2014, 16, 6873.	1.3	20
54	Controllable synthesis of Ni nanotube arrays and their structure-dependent catalytic activity toward dye degradation. CrystEngComm, 2014, 16, 4406-4413.	1.3	28

#	Article	IF	CITATIONS
55	A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix. Mikrochimica Acta, 2014, 181, 1463-1470.	2.5	56
56	Shape-controlled Synthesis of CoNi2S4 Microstructures from Precursors: A Study of Their Catalytic Application to <i>p</i> -Nitrophenol Reduction. Chemistry Letters, 2014, 43, 1590-1592.	0.7	9
57	Nonâ€enzymatic electrochemical sensors for the detection of H ₂ O ₂ based on Mn ₃ O ₄ octahedron submicrostructures. Micro and Nano Letters, 2014, 9, 736-740.	0.6	6
58	Reduced Graphene Oxide/CuI Nanocomposite: An Efficient and Recyclable Catalyst for the N-Phenylation of Indole. Chemistry Letters, 2013, 42, 709-710.	0.7	5
59	Ultrasonic-assisted surfactant-free synthesis of highly magnetized FeCo alloy nanocrystallite from ferric and cobalt salt. Journal of Alloys and Compounds, 2012, 539, 21-25.	2.8	22
60	Monodispersed FeNi2 alloy nanostructures: solvothermal synthesis, magnetic properties and size-dependent catalytic activity. CrystEngComm, 2012, 14, 7626.	1.3	55
61	3-D flower-like NiCo alloy nano/microstructures grown by a surfactant-assisted solvothermal process. CrystEngComm, 2011, 13, 1328-1332.	1.3	84