
Maria Martinez-Ibañez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5756854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enabling double layer polymer electrolyte batteries: Overcoming the Li-salt interdiffusion. Energy Storage Materials, 2022, 45, 578-585.	9.5	14
2	Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nature Materials, 2022, 21, 455-462.	13.3	78
3	Anions with a Dipole: Toward High Transport Numbers in Solid Polymer Electrolytes. Chemistry of Materials, 2022, 34, 3451-3460.	3.2	11
4	Toward High-Voltage Solid-State Li-Metal Batteries with Double-Layer Polymer Electrolytes. ACS Energy Letters, 2022, 7, 1473-1480.	8.8	55
5	Anion π–π Stacking for Improved Lithium Transport in Polymer Electrolytes. Journal of the American Chemical Society, 2022, 144, 9806-9816.	6.6	28
6	Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO. Inorganics, 2022, 10, 81.	1.2	4
7	Salt Additives for Improving Cyclability of Polymer-Based All-Solid-State Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 4459-4464.	2.5	18
8	Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries. Journal of Power Sources, 2020, 448, 227424.	4.0	34
9	Trifluoromethyl-free anion for highly stable lithium metal polymer batteries. Energy Storage Materials, 2020, 32, 225-233.	9.5	42
10	Insight into the Ionic Transport of Solid Polymer Electrolytes in Polyether and Polyester Blends. Journal of Physical Chemistry C, 2020, 124, 17981-17991.	1.5	37
11	Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid. Journal of the Electrochemical Society, 2020, 167, 070524.	1.3	135
12	Unprecedented Improvement of Single Liâ€lon Conductive Solid Polymer Electrolyte Through Salt Additive. Advanced Functional Materials, 2020, 30, 2000455.	7.8	63
13	Weakly Coordinating Fluorineâ€Free Polysalt for Single Lithiumâ€Ion Conductive Solid Polymer Electrolytes. Batteries and Supercaps, 2020, 3, 738-746.	2.4	14
14	Solid Polymer Electrolytes Comprising Camphor-Derived Chiral Salts for Solid-State Batteries. Journal of the Electrochemical Society, 2020, 167, 120541.	1.3	1
15	Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives. Journal of Power Sources, 2019, 438, 226985.	4.0	73
16	Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Etherâ€Functionalized Anion. Angewandte Chemie - International Edition, 2019, 58, 12070-12075.	7.2	61
17	Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Etherâ€Functionalized Anion. Angewandte Chemie, 2019, 131, 12198-12203.	1.6	22
18	Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule, 2019, 3, 1689-1702.	11.7	108

#	Article	IF	CITATIONS
19	Fluorineâ€Free Noble Salt Anion for Highâ€Performance Allâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900763.	10.2	66
20	Flowable polymer electrolytes for lithium metal batteries. Journal of Power Sources, 2019, 423, 218-226.	4.0	50
21	Enhanced Lithiumâ€lon Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Angewandte Chemie, 2019, 131, 7911-7916.	1.6	51
22	Improvement of the Cationic Transport in Polymer Electrolytes with (Difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide Salts. ChemElectroChem, 2019, 6, 1019-1022.	1.7	29
23	Solid Electrolytes for Lithium Metal and Future Lithium-ion Batteries. , 2019, , 72-101.		7
24	Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. Journal of Power Sources, 2018, 383, 144-149.	4.0	113
25	Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1138-1147.	1.6	17
26	Design of nanostructured siloxane-gelatin coatings: Immobilization strategies and dissolution properties. Journal of Non-Crystalline Solids, 2018, 481, 368-374.	1.5	5
27	Characterization of serum proteins attached to distinct sol–gel hybrid surfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1477-1485.	1.6	14
28	Silica-gelatin hybrid sol-gel coatings: A proteomic study with biocompatibility implications. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1769-1779.	1.3	5
29	Self‣tanding Highly Conductive Solid Electrolytes Based on Block Copolymers for Rechargeable All‣olid‣tate Lithiumâ€Metal Batteries. Batteries and Supercaps, 2018, 1, 149-159.	2.4	41
30	Electrolyte Additives for Roomâ€Temperature, Sodiumâ€Based, Rechargeable Batteries. Chemistry - an Asian Journal, 2018, 13, 2770-2780.	1.7	53
31	Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. Journal of the American Chemical Society, 2018, 140, 9921-9933.	6.6	249
32	Development of hybrid sol–gel coatings for the improvement of metallic biomaterials performance. Progress in Organic Coatings, 2016, 96, 42-51.	1.9	22
33	Biological characterization of a new silicon based coating developed for dental implants. Journal of Materials Science: Materials in Medicine, 2016, 27, 80.	1.7	27
34	Study of the degradation of hybrid sol–gel coatings in aqueous medium. Progress in Organic Coatings, 2014, 77, 1799-1806.	1.9	53
35	Synthesis of hybrid sol–gel materials and their biological evaluation with human mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2013, 24, 1491-1499.	1.7	6
36	The design and characterisation of sol–gel coatings for the controlled-release of active molecules. Journal of Sol-Gel Science and Technology, 2012, 64, 442-451.	1.1	10