
Steven A Rosenzweig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5756643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IGFâ€dependent dynamic modulation of a protease cleavage site in the intrinsically disordered linker domain of human <scp>IGFBP2</scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 1732-1743.	1.5	3
2	The Continuing Evolution of Insulin-like Growth Factor Signaling. F1000Research, 2020, 9, 205.	0.8	16
3	The peroxidase PRDX1 inhibits the activated phenotype in mammary fibroblasts through regulating c-Jun N-terminal kinases. BMC Cancer, 2019, 19, 812.	1.1	17
4	Vimentin and Non-Muscle Myosin IIA are Members of the Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in Head and Neck Squamous Cell Carcinoma Cells. Translational Oncology, 2019, 12, 49-61.	1.7	7
5	An ultra-stable redox-controlled self-assembling polypeptide nanotube for targeted imaging and therapy in cancer. Journal of Nanobiotechnology, 2018, 16, 101.	4.2	12
6	Acquired Resistance to Drugs Targeting Tyrosine Kinases. Advances in Cancer Research, 2018, 138, 71-98.	1.9	65
7	NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget, 2018, 9, 25503-25516.	0.8	27
8	The tumor suppressor capability of p53 is dependent on non-muscle myosin IIA function in head and neck cancer. Oncotarget, 2017, 8, 22991-23007.	0.8	24
9	Receptor Cross-Talk. , 2017, , 1-6.		0
10	Receptor Cross-Talk. , 2016, , 3935-3940.		0
11	Receptor Cross-Talk. , 2015, , 1-6.		0
12	Insulin-Like Growth Factor-1 Receptors in Head and Neck Cancer. , 2014, , 113-130.		1
13	Role of Oxidative Stress and the Microenvironment in Breast Cancer Development and Progression. Advances in Cancer Research, 2013, 119, 107-125.	1.9	153
14	Loss of Expression and Function of SOCS3 Is an Early Event in HNSCC: Altered Subcellular Localization as a Possible Mechanism Involved in Proliferation, Migration and Invasion. PLoS ONE, 2012, 7, e45197.	1.1	26
15	Acquired resistance to drugs targeting receptor tyrosine kinases. Biochemical Pharmacology, 2012, 83, 1041-1048.	2.0	104
16	Receptor Cross-Talk. , 2011, , 3194-3198.		0
17	Tumor Secretion of VEGF Induces Endothelial Cells to Suppress T cell Functions Through the Production of PGE2. Journal of Immunotherapy, 2010, 33, 126-135.	1.2	56
18	Defining the pathway to insulin-like growth factor system targeting in cancer. Biochemical Pharmacology, 2010, 80, 1115-1124.	2.0	118

#	Article	IF	CITATIONS
19	Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene, 2010, 29, 4449-4459.	2.6	71
20	High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2. Archives of Biochemistry and Biophysics, 2010, 501, 195-200.	1.4	13
21	Spontaneous and reversible self-assembly of a polypeptide fragment of insulin-like growth factor bindingprotein-2 into fluorescent nanotubular structures. Chemical Communications, 2010, 46, 216-218.	2.2	10
22	Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Human Immunology, 2009, 70, 375-382.	1.2	51
23	Insulin-like growth factor-1 receptor and ligand targeting in head and neck squamous cell carcinoma. Cancer Letters, 2007, 248, 269-279.	3.2	54
24	IGF-1 induced vascular endothelial growth factor secretion in head and neck squamous cell carcinoma. Biochemical and Biophysical Research Communications, 2006, 342, 851-858.	1.0	52
25	Insulin-like Growth Factor-I and Its Binding Proteins: Regulation of Secretion and Mechanism of Action at the Receptor Level. , 2006, , 51-65.		Ο
26	Paradoxical effects of the phage display-derived peptide antagonist IGF-F1-1 on insulin-like growth factor-1 receptor signaling. Biochemical Pharmacology, 2006, 72, 53-61.	2.0	7
27	Low Insulin-Like Growth Factor Binding Protein-2 Expression Is Responsible for Increased Insulin Receptor Substrate-1 Phosphorylation in Mesangial Cells from Mice Susceptible to Glomerulosclerosis. Endocrinology, 2006, 147, 3547-3554.	1.4	14
28	Hypoxia-Inducible Factor-1-Dependent and -Independent Regulation of Insulin-Like Growth Factor-1-Stimulated Vascular Endothelial Growth Factor Secretion. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 666-675.	1.3	66
29	Insulin-Like Growth Factor Binding Protein-2: Contributions of the C-Terminal Domain to Insulin-Like Growth Factor-1 Binding. Molecular Pharmacology, 2006, 69, 833-845.	1.0	30
30	IGF-1–Induced VEGF and IGFBP-3 Secretion Correlates with Increased HIF-1α Expression and Activity in Retinal Pigment Epithelial Cell Line D407. , 2004, 45, 2838.		90
31	Autocrine effects of IGF-I-induced VEGF and IGFBP-3 secretion in retinal pigment epithelial cell line ARPE-19. American Journal of Physiology - Cell Physiology, 2004, 287, C746-C753.	2.1	63
32	Synthesis and Characterization of Biotinylated Forms of Insulin-like Growth Factor-1:Â Topographical Evaluation of the IGF-1/IGFBP-2 and IGFBP-3 Interfaceâ€,‡. Biochemistry, 2004, 43, 11533-11545.	1.2	15
33	What's new in the IGF-binding proteins?. Growth Hormone and IGF Research, 2004, 14, 329-336.	0.5	74
34	Oral cancer treatment. Current Treatment Options in Oncology, 2003, 4, 27-41.	1.3	100
35	Synthesis and Characterization of Insulin-like Growth Factor (IGF)-1 Photoprobes Selective for the IGF-binding Proteins (IGFBPs). Journal of Biological Chemistry, 2001, 276, 2880-2889.	1.6	34
36	Oleic Acid and Angiotensin II Induce a Synergistic Mitogenic Response in Vascular Smooth Muscle Cells. Hypertension, 1998, 31, 978-985.	1.3	52

STEVEN A ROSENZWEIG

#	Article	IF	CITATIONS
37	Elevated glucose increases mesangial cell sensitivity to insulin-like growth factor I. American Journal of Physiology - Renal Physiology, 1998, 274, F1045-F1053.	1.3	13
38	Activation of cJun NH2-Terminal Kinase/Stress-Activated Protein Kinase by Insulin. Biochemistry, 1996, 35, 8769-8775.	1.2	60
39	Activation of C-jun N-terminal kinase/stress-activated protein kinase in primary glial cultures. Journal of Neuroscience Research, 1996, 46, 114-121.	1.3	71
40	Oleic Acid–Induced Mitogenic Signaling in Vascular Smooth Muscle Cells. Circulation Research, 1996, 79, 611-619.	2.0	65
41	Specific Recognition of the Human Neuroendocrine Receptor for Vasoactive Intestinal Peptide by Anti-Peptide Antibodies. Molecular and Cellular Neurosciences, 1994, 5, 145-152.	1.0	25
42	Retinal Insulin Receptors. Methods in Neurosciences, 1993, , 294-316.	0.5	1
43	Vasoactive intestinal peptide receptors on AR42J rat pancreatic acinar cells. Biochemical and Biophysical Research Communications, 1991, 179, 176-182.	1.0	12
44	Characterization of a Novel Receptor in Toad Retina with Dual Specificity for Insulin and Insulin-Like Growth Factor I. Journal of Neurochemistry, 1991, 57, 1332-1339.	2.1	8
45	Characterization of vasoactive intestinal peptide receptors in retina. Experimental Eye Research, 1990, 51, 317-323.	1.2	12
46	Characterization of cholecystokinin receptors in toad retina. Peptides, 1988, 9, 373-381.	1.2	14
47	Heterogeneity of cholecystokinin receptors in pancreas. Biochemical and Biophysical Research Communications, 1987, 143, 761-767.	1.0	9
48	Identification and localization of cholecystokinin-binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study Journal of Cell Biology, 1983, 96, 1288-1297.	2.3	119
49	Preparation of β-cells from fetal bovine pancreas: characterization of insulin biosynthetic activity. Canadian Journal of Biochemistry, 1979, 57, 480-488.	1.4	5
50	Glucagon from avian pancreatic islets: radioreceptor studies. Canadian Journal of Biochemistry, 1977, 55, 915-918.	1.4	4
51	Glucagon from Avian Pancreatic Islets: Purification and Partial Characterization of a 9000-Dalton Species with Glucagon Immunoreactivity, Experimental Biology and Medicine, 1976, 153, 344-349.	1.1	5