
William R Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5756634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical regulation of signaling pathways in bone. Gene, 2012, 503, 179-193.	2.2	334
2	mTORC2 Regulates Mechanically Induced Cytoskeletal Reorganization and Lineage Selection in Marrow-Derived Mesenchymal Stem Cells. Journal of Bone and Mineral Research, 2014, 29, 78-89.	2.8	134
3	Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone, 2014, 64, 39-46.	2.9	124
4	Cell Mechanosensitivity to Extremely Low-Magnitude Signals Is Enabled by a LINCed Nucleus. Stem Cells, 2015, 33, 2063-2076.	3.2	122
5	Perlecan/ <i>Hspg2</i> deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. Journal of Bone and Mineral Research, 2011, 26, 618-629.	2.8	104
6	Intranuclear Actin Regulates Osteogenesis. Stem Cells, 2015, 33, 3065-3076.	3.2	100
7	The dependences of osteocyte network on bone compartment, age, and disease. Bone Research, 2015, 3, .	11.4	84
8	Perlecan-Containing Pericellular Matrix Regulates Solute Transport and Mechanosensing Within the Osteocyte Lacunar-Canalicular System. Journal of Bone and Mineral Research, 2014, 29, 878-891.	2.8	82
9	Understanding Mechanobiology: Physical Therapists as a Force in Mechanotherapy and Musculoskeletal Regenerative Rehabilitation. Physical Therapy, 2016, 96, 560-569.	2.4	72
10	Association of the α2δ1 subunit with Cav3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. Journal of Bone and Mineral Research, 2011, 26, 2125-2139.	2.8	71
11	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	8.8	69
12	Mechanically activated fyn utilizes mTORC2 to regulate RhoA and adipogenesis in mesenchymal stem cells. Stem Cells, 2013, 31, 2528-2537.	3.2	64
13	Vibration therapy. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 447-453.	2.3	54
14	Exercise Regulation of Marrow Fat in the Setting of PPARÎ ³ Agonist Treatment in Female C57BL/6 Mice. Endocrinology, 2015, 156, 2753-2761.	2.8	52
15	Gap Junctional Communication in Osteocytes Is Amplified by Low Intensity Vibrations In Vitro. PLoS ONE, 2014, 9, e90840.	2.5	49
16	Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Scientific Reports, 2015, 5, 11049.	3.3	42
17	Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage. Stem Cells, 2016, 34, 1455-1463.	3.2	32
18	LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage. Bone, 2018, 107, 172-180.	2.9	31

WILLIAM R THOMPSON

#	Article	IF	CITATIONS
19	Mechanical Strain Downregulates C/EBPβ in MSC and Decreases Endoplasmic Reticulum Stress. PLoS ONE, 2012, 7, e51613.	2.5	29
20	Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification. Journal of Bone and Mineral Research, 2018, 33, 930-944.	2.8	29
21	Physical Activity for Strengthening Fracture Prone Regions of the Proximal Femur. Current Osteoporosis Reports, 2017, 15, 43-52.	3.6	23
22	Varying whole body vibration amplitude differentially affects tendon and ligament structural and material properties. Journal of Biomechanics, 2013, 46, 1496-1500.	2.1	20
23	Association of Genetic Factors With Selected Measures of Physical Performance. Physical Therapy, 2006, 86, 585-591.	2.4	19
24	Age and sex effects on FGF23-mediated response to mild phosphate challenge. Bone, 2021, 146, 115885.	2.9	19
25	Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon. Orthopaedic Journal of Sports Medicine, 2015, 3, 232596711558578.	1.7	16
26	Become one with the force: optimising mechanotherapy through an understanding of mechanobiology. British Journal of Sports Medicine, 2017, 51, 989-990.	6.7	16
27	Mechanical suppression of breast cancer cell invasion and paracrine signaling to osteoclasts requires nucleo-cytoskeletal connectivity. Bone Research, 2020, 8, 40.	11.4	16
28	The HIF-PHI BAY 85-3934 (Molidustat) Improves Anemia and Is Associated With Reduced Levels of Circulating FGF23 in a CKD Mouse Model. Journal of Bone and Mineral Research, 2020, 36, 1117-1130.	2.8	16
29	Bone biology. , 2019, , 15-52.		14
30	Progressive skeletal benefits of physical activity when young as assessed at the midshaft humerus in male baseball players. Osteoporosis International, 2017, 28, 2155-2165.	3.1	13
31	Serum xylosyltransferase 1 level increases during early posttraumatic osteoarthritis in mice with high bone forming potential. Bone, 2012, 51, 224-231.	2.9	11
32	The <scp>mTORC2</scp> Component Rictor Is Required for Loadâ€Induced Bone Formation in Lateâ€Stage Skeletal Cells. JBMR Plus, 2020, 4, e10366.	2.7	10
33	Skeletal Functions of Voltage Sensitive Calcium Channels. Current Osteoporosis Reports, 2021, 19, 206-221.	3.6	9
34	Mechanical stimulation of human dermal fibroblasts regulates pro-inflammatory cytokines: potential insight into soft tissue manual therapies. BMC Research Notes, 2020, 13, 400.	1.4	8
35	Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation. Scientific Reports, 2021, 11, 22593.	3.3	8
36	Co-culture of osteocytes and neurons on a unique patterned surface. Biointerphases, 2011, 6, 200-209.	1.6	7

WILLIAM R THOMPSON

#	Article	IF	CITATIONS
37	Differential Iron Requirements for Osteoblast and Adipocyte Differentiation. JBMR Plus, 2021, 5, e10529.	2.7	7
38	Association of genetic factors with selected measures of physical performance. Physical Therapy, 2006, 86, 585-91.	2.4	7
39	A Novel Massage Therapy Technique for Management of Chronic Cervical Pain: A Case Series. International Journal of Therapeutic Massage & Bodywork, 2011, 4, 1-7.	0.2	5
40	Experimental Integrative Muscular Movement Technique Enhances Cervical Range of Motion in Patients with Chronic Neck Pain: A Pilot Study. Journal of Alternative and Complementary Medicine, 2015, 21, 223-228.	2.1	4
41	Progress in the Full-Text Publication Rate of Orthopaedic and Sports Physical Therapy Abstracts Presented at the American Physical Therapy Association's Combined Sections Meeting. Journal of Orthopaedic and Sports Physical Therapy, 2018, 48, 44-49.	3.5	4
42	Baseball and Softball Pitchers are Distinct Within-Subject Controlled Models for Exploring Proximal Femur Adaptation to Physical Activity. Calcified Tissue International, 2019, 104, 373-381.	3.1	4
43	Cells as Functional Load Sensors and Drivers of Adaptation. , 2020, , 79-98.		1
44	Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity. Nutrients, 2022, 14, 2262.	4.1	1
45	Effects of 1,25-Dihydroxyvitamin D 3 on Voltage-Sensitive Calcium Channels in Osteoblast Differentiation and Morphology. , 2011, , 457-467.		Ο