
Carola A Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5756562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting gene-modified hematopoietic cells to the central nervous system: Use of green fluorescent protein uncovers microglial engraftment. Nature Medicine, 2001, 7, 1356-1361.	30.7	567
2	Reelin Deficiency and Displacement of Mature Neurons, But Not Neurogenesis, Underlie the Formation of Granule Cell Dispersion in the Epileptic Hippocampus. Journal of Neuroscience, 2006, 26, 4701-4713.	3.6	295
3	Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain, 2015, 138, 1208-1222.	7.6	257
4	Role for Reelin in the Development of Granule Cell Dispersion in Temporal Lobe Epilepsy. Journal of Neuroscience, 2002, 22, 5797-5802.	3.6	234
5	Subcellular Localization of Metabotropic GABABReceptor Subunits GABAB1a/band GABAB2in the Rat Hippocampus. Journal of Neuroscience, 2003, 23, 11026-11035.	3.6	215
6	Reelin Controls Granule Cell Migration in the Dentate Gyrus by Acting on the Radial Glial Scaffold. Cerebral Cortex, 2003, 13, 634-640.	2.9	185
7	Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiology of Disease, 2011, 42, 35-47.	4.4	169
8	Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Experimental Neurology, 2007, 203, 320-332.	4.1	112
9	The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. European Journal of Neuroscience, 2000, 12, 2547-2558.	2.6	97
10	Reelin deficiency causes granule cell dispersion in epilepsy. Experimental Brain Research, 2010, 200, 141-149.	1.5	87
11	Septotemporal Position in the Hippocampal Formation Determines Epileptic and Neurogenic Activity in Temporal Lobe Epilepsy. Cerebral Cortex, 2012, 22, 26-36.	2.9	81
12	Differential vulnerability of interneurons in the epileptic hippocampus. Frontiers in Cellular Neuroscience, 2013, 7, 167.	3.7	78
13	Mossy fiber sprouting and pyramidal cell dispersion in the hippocampal <scp>CA2</scp> region in a mouse model of temporal lobe epilepsy. Hippocampus, 2016, 26, 577-588.	1.9	59
14	Expression of CNTF/LIF-receptor components and activation of STAT3 signaling in axotomized facial motoneurons: Evidence for a sequential postlesional function of the cytokines. , 1999, 41, 559-571.		57
15	Epileptiform activity interferes with proteolytic processing of Reelin required for dentate granule cell positioning. FASEB Journal, 2011, 25, 1002-1013.	0.5	54
16	Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Experimental Neurology, 2009, 216, 390-397.	4.1	51
17	Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy. Cerebral Cortex, 2017, 27, 2348-2364.	2.9	50
18	Reorganization of the Rat Fascia Dentata after a Unilateral Entorhinal Cortex Lesion: Role of the Extracellular Matrix. Annals of the New York Academy of Sciences, 2000, 911, 207-220.	3.8	48

CAROLA A HAAS

#	Article	IF	CITATIONS
19	NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain, 2018, 141, 2772-2794.	7.6	45
20	Epilepsy-Induced Motility of Differentiated Neurons. Cerebral Cortex, 2014, 24, 2130-2140.	2.9	44
21	Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Frontiers in Cellular Neuroscience, 2013, 7, 248.	3.7	42
22	The Somatosensory Cortex of <i>reeler</i> Mutant Mice Shows Absent Layering But Intact Formation and Behavioral Activation of Columnar Somatotopic Maps. Journal of Neuroscience, 2010, 30, 15700-15709.	3.6	41
23	Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy. ELife, 2017, 6, .	6.0	41
24	Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. ELife, 2020, 9, .	6.0	40
25	Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon's horn sclerosis. Epilepsia, 2009, 50, 646-653.	5.1	39
26	Early life stress stimulates hippocampal reelin gene expression in a sexâ€specific manner: Evidence for corticosteroneâ€mediated action. Hippocampus, 2012, 22, 409-420.	1.9	39
27	Early Life Stress Differentially Modulates Distinct Forms of Brain Plasticity in Young and Adult Mice. PLoS ONE, 2012, 7, e46004.	2.5	36
28	Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Frontiers in Molecular Neuroscience, 2018, 11, 30.	2.9	36
29	TIMPâ€1 inhibits the proteolytic processing of Reelin in experimental epilepsy. FASEB Journal, 2013, 27, 2542-2552.	0.5	35
30	Seizure-Induced Motility of Differentiated Dentate Granule Cells Is Prevented by the Central Reelin Fragment. Frontiers in Cellular Neuroscience, 2016, 10, 183.	3.7	34
31	Altered theta coupling between medial entorhinal cortex and dentate gyrus in temporal lobe epilepsy. Epilepsia, 2012, 53, 1937-1947.	5.1	29
32	Position- and Time-Dependent Arc Expression Links Neuronal Activity to Synaptic Plasticity During Epileptogenesis. Frontiers in Cellular Neuroscience, 2018, 12, 244.	3.7	25
33	Region-specific activation of microglial cells in the rat septal complex following fimbria-fornix transection. Journal of Comparative Neurology, 1998, 390, 481-496.	1.6	23
34	Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures. Frontiers in Cellular Neuroscience, 2016, 10, 131.	3.7	23
35	CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Experimental Neurology, 2012, 236, 141-150.	4.1	22
36	Experimental epilepsy affects <scp>N</scp> otch1 signalling and the stem cell pool in the dentate gyrus. European Journal of Neuroscience, 2012, 36, 3643-3652.	2.6	21

CAROLA A HAAS

#	Article	IF	CITATIONS
37	Cultured astrocytes express functional receptors for galanin. , 1998, 24, 323-328.		20
38	Disorganization of neocortical lamination in focal cortical dysplasia is brain-region dependent: evidence from layer-specific marker expression. Acta Neuropathologica Communications, 2013, 1, 47.	5.2	20
39	Theta frequency decreases throughout the hippocampal formation in a focal epilepsy model. Hippocampus, 2018, 28, 375-391.	1.9	20
40	Characterization of focal cortical dysplasia with balloon cells by layerâ€specific markers: Evidence for differential vulnerability of interneurons. Epilepsia, 2017, 58, 635-645.	5.1	19
41	Expression of brainâ€derived neurotrophic factor and structural plasticity in the dentate gyrus and <scp>CA</scp> 2 region correlate with epileptiform activity. Epilepsia, 2019, 60, 1234-1247.	5.1	18
42	Mossy fiber sprouting into the hippocampal region <scp>CA2</scp> in patients with temporal lobe epilepsy. Hippocampus, 2021, 31, 580-592.	1.9	18
43	Whole Transcriptome Screening Reveals Myelination Deficits in Dysplastic Human Temporal Neocortex. Cerebral Cortex, 2017, 27, bhv346.	2.9	16
44	Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an "all-or-nothing―communication switch between the spine head and dendrite. PLoS Computational Biology, 2022, 18, e1010069.	3.2	14
45	Oligodendrocyte lineage and myelination are compromised in the gray matter of focal cortical dysplasia type IIa. Epilepsia, 2020, 61, 171-184.	5.1	13
46	Bursts with High and Low Load of Epileptiform Spikes Show Context-Dependent Correlations in Epileptic Mice. ENeuro, 2019, 6, ENEURO.0299-18.2019.	1.9	13
47	Role of NGF in axotomyâ€induced câ€JUN expressionin medial septal cholinergic neurons. International Journal of Developmental Neuroscience, 1998, 16, 691-703.	1.6	12
48	Quantitative synchrotron X-ray tomography of the material-tissue interface in rat cortex implanted with neural probes. Scientific Reports, 2019, 9, 7646.	3.3	12
49	Transcriptional characterization of the glial response due to chronic neural implantation of flexible microprobes. Biomaterials, 2021, 279, 121230.	11.4	12
50	Upâ€regulation of growthâ€associated protein 43 mRNA in rat medial septum neurons axotomized by fimbriaâ€fornix transection. European Journal of Neuroscience, 2000, 12, 4233-4242.	2.6	11
51	Increased Blood-Reelin-Levels in First Episode Schizophrenia. PLoS ONE, 2015, 10, e0134671.	2.5	10
52	Neurogenic Processes Are Induced by Very Short Periods of Voluntary Wheel-Running in Male Mice. Frontiers in Neuroscience, 2017, 11, 385.	2.8	9
53	Reelin Is Required for Maintenance of Granule Cell Lamination in the Healthy and Epileptic Hippocampus. Frontiers in Molecular Neuroscience, 2021, 14, 730811.	2.9	9
54	Long-term in vivo application of a potassium channel-based optogenetic silencer in the healthy and epileptic mouse hippocampus. BMC Biology, 2022, 20, 18.	3.8	8

#	Article	IF	CITATIONS
55	Histological Correlates of Diffusion-Weighted Magnetic Resonance Microscopy in a Mouse Model of Mesial Temporal Lobe Epilepsy. Frontiers in Neuroscience, 2020, 14, 543.	2.8	7
56	Adaptive Control of Sinusoidal Optogenetic Stimulation. , 2021, , .		2
57	Revisiting brain stimulation in Parkinson's disease. Science, 2021, 374, 153-154.	12.6	2