List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5756519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic structure of multi-layered graphene oxide membrane moderately reduced in vacuum. Journal of Physics and Chemistry of Solids, 2022, 164, 110623.	4.0	3
2	Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells International, 2022, 2022, 1-24.	2.5	12
3	Laboratory system for optical coherence tomography (OCT) using a laser plasma source of soft x-rays and extreme ultraviolet and focusing ellipsoidal optics. Optics Express, 2022, 30, 13491.	3.4	2
4	Nanometer-Resolution Imaging of Living Cells Using Soft X-ray Contact Microscopy. Applied Sciences (Switzerland), 2022, 12, 7030.	2.5	1
5	Coherence tomography with broad bandwidth extreme ultraviolet and soft X-ray radiation. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	5
6	1-keV emission from laser-plasma source based on an Xe/He double stream gas puff target. Optics Express, 2021, 29, 20514.	3.4	4
7	Adhesion of Triple-Negative Breast Cancer Cells under Fluorescent and Soft X-ray Contact Microscopy. International Journal of Molecular Sciences, 2021, 22, 7279.	4.1	2
8	Effect of Extreme Ultraviolet (EUV) Radiation and EUV Induced, N2 and O2 Based Plasmas on a PEEK Surface's Physico-Chemical Properties and MG63 Cell Adhesion. International Journal of Molecular Sciences, 2021, 22, 8455.	4.1	14
9	Spectral investigations of low-temperature plasma induced in CO ₂ gas by nanosecond pulses of extreme ultraviolet (EUV). Plasma Sources Science and Technology, 2021, 30, 115008.	3.1	2
10	Demonstration of Near Edge X-ray Absorption Fine Structure Spectroscopy of Transition Metals Using Xe/He Double Stream Gas Puff Target Soft X-ray Source. Materials, 2021, 14, 7337.	2.9	2
11	NEXAFS spectroscopy and spectromicroscopy in the soft X-ray spectral region with a compact laser plasma source based on a double stream gas puff target. Radiation Physics and Chemistry, 2020, 175, 108086.	2.8	0
12	EXAFS of titanium LIII edge using a compact laboratory system based on a laser-plasma soft X-ray source. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	2
13	Recombination contributions to the anisotropic emission from a laser produced copper plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 065701.	1.5	9
14	Soft x-ray photoabsorption spectra of photoionized CH4and CO2plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 045701.	1.5	2
15	Nanoexplosion initiated by short-wavelength radiation: Optical breakdown in soft matter revisited. Journal of Applied Physics, 2020, 128, 025901.	2.5	0
16	Effect of photoionized plasma and EUV induced surface modification on physico-chemical properties and cytocompatibility of PLLA. EXPRESS Polymer Letters, 2020, 14, 1063-1077.	2.1	5
17	Pulsed laser-plasma soft X-ray source as a compact tool for X-ray absorption spectroscopy of metal oxides. Journal of Instrumentation, 2020, 15, C05026-C05026.	1.2	0
18	Surface Modification of PLLA, PTFE and PVDF with Extreme Ultraviolet (EUV) to Enhance Cell Adhesion. International Journal of Molecular Sciences, 2020, 21, 9679.	4.1	15

#	Article	IF	CITATIONS
19	Biological Applications of Short Wavelength Microscopy Based on Compact, Laser-Produced Gas-Puff Plasma Source. Applied Sciences (Switzerland), 2020, 10, 8338.	2.5	6
20	Physico-Chemical Surface Modifications of Polyetheretherketone (PEEK) Using Extreme Ultraviolet (EUV) Radiation and EUV-Induced Nitrogen Plasma. Materials, 2020, 13, 4466.	2.9	13
21	Imaging of Cell Structures Using Optimized Soft X-ray Contact Microscopy. Applied Sciences (Switzerland), 2020, 10, 6895.	2.5	4
22	Characterization of Si and SiC detectors for laser-generated plasma monitoring in short wavelength range. Journal of Instrumentation, 2020, 15, C05027-C05027.	1.2	2
23	Laser-produced plasma soft x-ray source based on an aerosol target. Physics of Plasmas, 2020, 27, .	1.9	4
24	EUV induced, low temperature plasmas, produced in an aerosol target. Journal of Instrumentation, 2020, 15, C02035-C02035.	1.2	0
25	Oxygen K-shell photoabsorption spectra of photoionized CO ₂ plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 105701.	1.5	1
26	Chemical Dosimetry in the "Water Window― Ferric Ions and Hydroxyl Radicals Produced by Intense Soft X Rays. Radiation Research, 2020, 193, 372.	1.5	5
27	Spectral Investigation of Laser Plasma Sources for X-Ray Coherence Tomography. Acta Physica Polonica A, 2020, 137, 48-50.	0.5	3
28	2-D nanometer thickness mapping applying a reduced bias soft X-ray NEXAFS approach. Optics Express, 2020, 28, 22478.	3.4	2
29	Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Agarose with a Compact Laser Plasma Soft X-Ray Source. Acta Physica Polonica A, 2020, 137, 51-53.	0.5	1
30	Generation and selected applications of the EUV and SXR radiation, emitted from compact laser-plasma sources. , 2020, , .		1
31	Chemical surface modification of polyethylene terephthalate (PET) films using extreme ultraviolet. AIP Conference Proceedings, 2019, , .	0.4	0
32	Time-resolved measurements of extreme ultraviolet (EUV) emission, from EUV-induced He, Ne, and Ar plasmas. Laser and Particle Beams, 2019, 37, 49-54.	1.0	2
33	NEXAFS at nitrogen K-edge and titanium L-edge using a laser-plasma soft x-ray source based on a double-stream gas puff target. APL Photonics, 2019, 4, 030807.	5.7	11
34	A "water window―tomography based on a laser-plasma double-stream gas-puff target soft X-ray source. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	13
35	Time-resolved studies of low-temperature, EUV-induced plasmas: EUV emission in selected spectral ranges. Laser and Particle Beams, 2019, 37, 400-407.	1.0	2
36	SiC detectors for evaluation of laser–plasma dynamics employing gas-puff targets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922, 250-256.	1.6	4

#	Article	IF	CITATIONS
37	Monitoring of the plasma generated by a gas-puff target source. Physical Review Accelerators and Beams, 2019, 22, .	1.6	5
38	Plasma density shaping for attosecond electron bunch generation. , 2019, , .		1
39	Cluster and aerosol targets, produced using a gas puff approach, for laser-matter interaction experiments. , 2019, , .		2
40	Tomographic imaging using a compact soft X-ray microscope based on a laser plasma light source. , 2019, , .		2
41	Silicon carbide detectors for diagnostics of laser-produced plasmas. , 2019, , .		3
42	Nanoimaging using a compact laser plasma soft x-ray source based on a gas puff target. , 2019, , .		1
43	A single-shot near edge x-ray absorption fine structure spectroscopy using double stream gas puff target source. , 2019, , .		0
44	EUV-induced plasmas created using intense ionizing radiation pulses from laser-produced plasma sources. , 2019, , .		0
45	Tomography with compact laser plasma double-stream gas-puff target source of the EUV and SXR radiation. , 2019, , .		Ο
46	Near-edge x-ray absorption fine structure spectroscopy with laser plasma sources of soft x-ray radiation. , 2019, , .		0
47	Pulsed radiography and tomography of transient and low-density objects using laser plasma sources of extreme ultraviolet (EUV). , 2019, , .		0
48	A nanometer axial resolution x-ray coherence tomography with a broadband SXR radiation emitted from a compact laser plasma double-stream gas-puff target source. , 2019, , .		1
49	Advances in microscopic imaging at the nanoscale using soft X-rays and extreme ultraviolet (EUV) from a compact laser plasma source. , 2019, , .		1
50	Recent advances in development and application of laser plasma x-ray sources based on a gas puff target (Conference Presentation). , 2019, , .		0
51	Photoionization of Atomic Neon Induced Using Nanosecond Pulses of Extreme Ultraviolet (EUV). Springer Proceedings in Physics, 2018, , 203-211.	0.2	2
52	Nanoscale Imaging Using a Compact Laser Plasma Source of Soft X-Rays and Extreme Ultraviolet (EUV). Springer Proceedings in Physics, 2018, , 251-260.	0.2	1
53	Low-temperature plasmas induced in nitrogen by extreme ultraviolet (EUV) pulses. Laser and Particle Beams, 2018, 36, 76-83.	1.0	8
54	Extreme ultraviolet holography using a laser-plasma source based on xenon/helium gas puff target. Laser and Particle Beams, 2018, 36, 8-14.	1.0	1

HENRYK FIEDOROWICZ

#	Article	IF	CITATIONS
55	Nanoimaging using soft X-ray and EUV laser-plasma sources. EPJ Web of Conferences, 2018, 167, 03001.	0.3	5
56	Photoionized plasmas induced in molecular gases by extreme ultraviolet and X-ray pulses. EPJ Web of Conferences, 2018, 167, 03003.	0.3	1
57	Single-Shot near Edge X-ray Fine Structure (NEXAFS) Spectroscopy Using a Laboratory Laser-Plasma Light Source. Materials, 2018, 11, 1303.	2.9	10
58	Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses. Physics of Plasmas, 2018, 25, .	1.9	3
59	A table-top EUV focusing optical system with high energy density using a modified Schwarzschild objective and a laser-plasma light source. Review of Scientific Instruments, 2018, 89, 103109.	1.3	11
60	Temporal measurements of extreme ultraviolet (EUV) emission, from low temperature, EUV-induced plasmas. Laser and Particle Beams, 2018, 36, 286-292.	1.0	9
61	Experimental and theoretical study on emission spectra of a nitrogen photoionized plasma induced by intense EUV pulses. EPJ Web of Conferences, 2018, 167, 03006.	0.3	3
62	2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 145, 107-114.	2.9	7
63	Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source. Optics Express, 2018, 26, 8260.	3.4	31
64	Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source. Scientific Reports, 2018, 8, 8494.	3.3	24
65	Development and optimization of a "water window―microscope based on a gas-puff target laser-produced plasma source. EPJ Web of Conferences, 2018, 167, 03002.	0.3	1
66	Nanoimaging Using Soft X-Ray and EUV Sources Based on Double Stream Gas Puff Targets. Acta Physica Polonica A, 2018, 133, 271-276.	0.5	1
67	Modification of Polymer Substrates with Extreme Ultraviolet - Potential Application in Cancer Cell Identification. Acta Physica Polonica A, 2018, 133, 283-285.	0.5	1
68	Surface Modification of Solids by Extreme Ultraviolet and Plasma Treatment. Acta Physica Polonica A, 2018, 133, 267-270.	0.5	1
69	Biological Action in and out of the Water Window. Acta Physica Polonica A, 2018, 133, 236-238.	0.5	0
70	Investigation of low temperature plasmas induced using laser-produced plasma EUV sources. , 2018, , .		0
71	Optical systems for laser-produced plasma EUV and soft x-ray sources. , 2018, , .		0
72	NEXAFS spectroscopy and spectromicroscopy with laser-produced plasma sources of soft x-ray radiation. , 2018, , .		0

#	Article	IF	CITATIONS
73	Experimental devices for produce gas cluster and aerosol targets for laser matter experiments. , 2018, , .		0
74	Calibration of SiC Detectors for Nitrogen and Neon Plasma Emission Using Gas-Puff Target Sources. IEEE Transactions on Electron Devices, 2017, 64, 1120-1126.	3.0	14
75	Time resolved anisotropic emission from an aluminium laser produced plasma. Physics of Plasmas, 2017, 24, .	1.9	12
76	Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations. AIP Conference Proceedings, 2017, , .	0.4	0
77	Soft x-ray imaging with incoherent sources. , 2017, , .		0
78	Temporal variations of electron density and temperature in Kr/Ne/H2 photoionized plasma induced by nanosecond pulses from extreme ultraviolet source. Physics of Plasmas, 2017, 24, .	1.9	6
79	Biological and material science applications of EUV and SXR nanoscale imaging systems based on double stream gas puff target laser plasma sources. Nuclear Instruments & Methods in Physics Research B, 2017, 411, 29-34.	1.4	5
80	Development and characterization of a laser-plasma soft X-ray source for contact microscopy. Nuclear Instruments & Methods in Physics Research B, 2017, 411, 35-43.	1.4	14
81	Low-temperature photoionized plasmas induced in Xe gas using an EUV source driven by nanosecond laser pulses. Laser and Particle Beams, 2017, 35, 42-47.	1.0	11
82	Spatial coherence measurements of the EUV emission from laser-plasma source based on xenon/helium gas puff target. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	2
83	Comparison of the polarisation of line and continuum emission in a laser produced plasma. Journal of Physics: Conference Series, 2017, 810, 012063.	0.4	1
84	A desktop extreme ultraviolet microscope based on a compact laser-plasma light source. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	12
85	Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source. Nuclear Instruments & Methods in Physics Research B, 2017, 411, 44-48.	1.4	0
86	A standâ€alone compact EUV microscope based on gasâ€puff target source. Journal of Microscopy, 2017, 265, 251-260.	1.8	13
87	Surface roughness control by extreme ultraviolet (EUV) radiation. AIP Conference Proceedings, 2017, ,	0.4	4
88	EUV induced photoionized plasma, a medium for spectral investigation. Journal of Physics: Conference Series, 2017, 810, 012045.	0.4	0
89	Surface structuring and wettability control of Polyvinyl fluoride (PVF) using extreme ultraviolet (EUV) surface modification. , 2017, , .		0
90	Bioimaging Using Full Field and Contact EUV and SXR Microscopes with Nanometer Spatial Resolution. Applied Sciences (Switzerland), 2017, 7, 548.	2.5	14

#	Article	IF	CITATIONS
91	Nanoscale imaging applications of soft X-ray microscope based on a gas-puff target source. Journal of Physics: Conference Series, 2017, 849, 012050.	0.4	2
92	Reflective optics for effective collection of x-ray and EUV radiation: use for creation of photoionized plasmas and detection of weak signals. , 2017, , .		0
93	Plasma characterization of the gas-puff target source dedicated for soft X-ray microscopy using SiC detectors. Nukleonika, 2016, 61, 139-143.	0.8	8
94	Photoionized argon plasmas induced with intense soft x-ray and extreme ultraviolet pulses. Plasma Physics and Controlled Fusion, 2016, 58, 014009.	2.1	6
95	Characterization and optimization of images acquired by a compact soft X-ray microscope based on a double stream gas-puff target source. Journal of Instrumentation, 2016, 11, C04003-C04003.	1.2	3
96	Kr photoionized plasma induced by intense extreme ultraviolet pulses. Physics of Plasmas, 2016, 23, 043512.	1.9	11
97	Low temperature plasmas created by photoionization of gases with intense radiation pulses from laser-produced plasma sources. , 2016, , .		0
98	Soft X-ray microscope with nanometer spatial resolution and its applications. Proceedings of SPIE, 2016, , .	0.8	2
99	EUV induced low temperature SF6-based plasma. Journal of Instrumentation, 2016, 11, C03009-C03009.	1.2	4
100	DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source. Radiation Physics and Chemistry, 2016, 120, 17-25.	2.8	9
101	Applications of a Compact "Water Window" Source for Investigations of Nanostructures Using SXR Microscope. Acta Physica Polonica A, 2016, 129, 169-171.	0.5	4
102	Contact Microscopy using a Compact Laser Produced Plasma Soft X-Ray Source. Acta Physica Polonica A, 2016, 129, 237-240.	0.5	13
103	Extreme Ultraviolet Surface Modification of Polyethylene Terephthalate (PET) for Surface Structuring and Wettability Control. Acta Physica Polonica A, 2016, 129, 241-243.	0.5	17
104	Low temperature photoionized Ne plasmas induced by laser-plasma EUV sources. Laser and Particle Beams, 2015, 33, 193-200.	1.0	4
105	Study of uniformity of elongated plasma channels formed in gas puff targets using extreme ultraviolet and soft X-ray radiation. Laser and Particle Beams, 2015, 33, 293-298.	1.0	2
106	A Compact "Water Window―Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology. Microscopy and Microanalysis, 2015, 21, 1214-1223.	0.4	36
107	Photoionized plasmas in laboratory: a connection to astrophysics and planetary sciences. , 2015, , .		1
108	Characterization of pulsed capillary channel gas puff target using EUV shadowgraphy. Nuclear Instruments & Methods in Physics Research B, 2015, 345, 15-21.	1.4	4

#	Article	IF	CITATIONS
109	Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems. Physics of Plasmas, 2015, 22, 043302.	1.9	23
110	Extreme ultraviolet and soft X-ray imaging with compact, table top laser plasma EUV and SXR sources. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 40-48.	1.4	4
111	Fresnel zone plate telescope for condenser alignment in water-window microscope. Journal of Optics (United Kingdom), 2015, 17, 055606.	2.2	3
112	Desktop water window microscope using a double-stream gas puff target source. Applied Physics B: Lasers and Optics, 2015, 118, 573-578.	2.2	48
113	Nanoscale imaging and optimization of a compact "water window" SXR microscope. Proceedings of SPIE, 2015, , .	0.8	0
114	A compact "water-window―microscope with 60-nm spatial resolution based on a double stream gas-puff target and Fresnel zone plate optics. , 2015, , .		0
115	Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology. Proceedings of SPIE, 2015, , .	0.8	0
116	Compact laser produced plasma soft x-ray source for contact microscopy experiments. , 2015, , .		0
117	Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 98-107.	1.4	32
118	Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 27-32.	1.4	20
119	Extreme ultraviolet-induced photoionized plasmas. Physica Scripta, 2014, T161, 014061.	2.5	15
120	Resonant third harmonic generation of KrF laser in Ar gas. Review of Scientific Instruments, 2014, 85, 123105.	1.3	5
121	Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 3298-3310.	4.0	71
122	Laser-plasma SXR/EUV sources: adjustment of radiation parameters for specific applications. , 2014, , .		2
123	Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique. Physics of Plasmas, 2014, 21, 103106.	1.9	6
124	Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses. Physics of Plasmas, 2014, 21, 073303.	1.9	32
125	Laser plasma sources of soft X-rays and extreme ultraviolet (EUV) for application in science and technology. , 2014, , .		3
126	Extreme ultraviolet tomography of multi-jet gas puff target for high-order harmonic generation. Applied Physics B: Lasers and Optics, 2014, 117, 253-263.	2.2	14

#	Article	IF	CITATIONS
127	Extreme ultraviolet tomography using a compact laser–plasma source for 3D reconstruction of low density objects. Optics Letters, 2014, 39, 532.	3.3	14
128	Imaging in Nanoscale Using Laser-Plasma Sources of Extreme Ultraviolet (EUV). Springer Proceedings in Physics, 2014, , 269-276.	0.2	1
129	Polycarbonate Polymer Surface Modification by Extreme Ultraviolet (EUV) Radiation. Acta Physica Polonica A, 2014, 125, 924-928.	0.5	17
130	High-order harmonic generation using a multi-jet gas puff target. Photonics Letters of Poland, 2014, 6,	0.4	11
131	Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Applied Physics B: Lasers and Optics, 2013, 111, 239-247.	2.2	35
132	Study of crystalline thin films and nanofibers by means of the laser–plasma EUV-source based microscopy. Radiation Physics and Chemistry, 2013, 93, 54-58.	2.8	5
133	Sub 1-μ m resolution "water-window―microscopy using a compact, laser-plasma SXR source based on a double stream gas-puff target. Nuclear Instruments & Methods in Physics Research B, 2013, 311, 42-46.	1.4	27
134	Luminescence of He and Ne gases induced by EUV pulses from a laser plasma source. Radiation Physics and Chemistry, 2013, 93, 9-13.	2.8	18
135	Development and applications of x-ray lasers at PALS Centre. , 2013, , .		0
136	EUV optics in photoionization experiments. , 2013, , .		1
137	Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas. Physics of Plasmas, 2013, 20, .	1.9	14
138	EUV induced ablation and surface modification of poly(vinylidene fluoride) irradiated in vacuum or gaseous environment. Proceedings of SPIE, 2013, , .	0.8	1
139	Characterization of a dual-gas multi-jet gas puff target for high-order harmonic generation using extreme ultraviolet shadowgraphy. Laser and Particle Beams, 2013, 31, 219-227.	1.0	13
140	Photo-ionized neon plasmas induced by radiation pulses of a laser-plasma EUV source and a free electron laser FLASH. Laser and Particle Beams, 2013, 31, 195-201.	1.0	33
141	Water-window microscopy using compact, laser-plasma source based on Ar/He double stream gas-puff target. Proceedings of SPIE, 2013, , .	0.8	2
142	Extreme ultraviolet and soft X-ray imaging using compact laser-plasma sources based on a double stream gas-puff target. Photonics Letters of Poland, 2013, 5, .	0.4	1
143	X-ray optics for laser-plasma sources: Aplications of intense SXR and EUV radiation pulses. , 2012, , .		1
			_

Nanoscale imaging using a compact laser plasma EUV source. , 2012, , .

#	Article	IF	CITATIONS
145	Lab-scale EUV nano-imaging employing a gas-puff-target source: image quality versus plasma radiation characteristics. Proceedings of SPIE, 2012, , .	0.8	1
146	Simultaneous treatment of polymer surface by EUV radiation and ionized nitrogen. Applied Physics A: Materials Science and Processing, 2012, 109, 39-43.	2.3	52
147	Imaging of nanostructures with sub-100Ânm spatial resolution using a desktop EUV microscope. Applied Physics B: Lasers and Optics, 2012, 109, 105-111.	2.2	9
148	Characterization of multi-jet gas puff targets for high-order harmonic generation using EUV shadowgraphy. Nuclear Instruments & Methods in Physics Research B, 2012, 285, 102-106.	1.4	20
149	Aspects of nanometer scale imaging with extreme ultraviolet (EUV) laboratory sources. Opto-electronics Review, 2012, 20, 1-14.	2.4	2
150	Soft X-ray characterization of an elongated gas-puff target dedicated for laser–matter interaction experiments and high harmonic generation. Nuclear Instruments & Methods in Physics Research B, 2012, 276, 38-43.	1.4	14
151	Efficient micromachining of poly(vinylidene fluoride) using a laser-plasma EUV source. Applied Physics A: Materials Science and Processing, 2012, 106, 551-555.	2.3	14
152	Nanometer-Scale Incoherent Imaging Using Laser-Plasma EUV Source. Acta Physica Polonica A, 2012, 121, 450-453.	0.5	4
153	EUV-Induced Nanostructuring of Solids. Acta Physica Polonica A, 2012, 121, 445-449.	O.5	1
154	A 50nm spatial resolution EUV imaging–resolution dependence on object thickness and illumination bandwidth. Optics Express, 2011, 19, 9541.	3.4	45
155	EUV: induced ablation and surface modifications of solids. Proceedings of SPIE, 2011, , .	0.8	3
156	Combined effect of EUV irradiation and acetone treatment onÂPETÂsurface. Applied Physics A: Materials Science and Processing, 2011, 103, 173-178.	2.3	7
157	Laser-produced plasma EUV source based on tin-rich, thin-layerÂtargets. Applied Physics B: Lasers and Optics, 2011, 102, 559-567.	2.2	10
158	EUV-induced physico-chemical changes in near-surface layers of polymers. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 270-275.	1.7	17
159	Laser-plasma EUV source dedicated for surface processing of polymers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 647, 125-131.	1.6	54
160	EUV-induced surface modification of polymers. Springer Proceedings in Physics, 2011, , 239-244.	0.2	2
161	Nanometer scale imaging with table top extreme ultraviolet sources. , 2010, , .		1
162	Recent advancements in technology of compact laser plasma EUV sources. Proceedings of SPIE, 2010, , .	0.8	0

#	Article	IF	CITATIONS
163	Nanostructured polymers by a compact laser plasma EUV source. , 2010, , .		1
164	PMMA and FEP surface modifications induced with EUV pulses in two selected wavelength ranges. Applied Physics A: Materials Science and Processing, 2010, 98, 61-65.	2.3	16
165	Physical and chemical modifications of PET surface usingÂaÂlaser-plasma EUV source. Applied Physics A: Materials Science and Processing, 2010, 99, 831-836.	2.3	27
166	EUV micropatterning for biocompatibility control of PET. Applied Physics A: Materials Science and Processing, 2010, 100, 511-516.	2.3	34
167	A compact, quasi-monochromatic laser-plasma EUV source based on a double-stream gas-puff target at 13.8 nm wavelength. Applied Physics B: Lasers and Optics, 2010, 100, 461-469.	2.2	33
168	Characterization and optimization of the laser-produced plasma EUV source at 13.5 nm based on a double-stream Xe/He gas puff target. Applied Physics B: Lasers and Optics, 2010, 101, 773-789.	2.2	52
169	"Water window―compact, table-top laser plasma soft X-ray sources based on a gas puff target. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1692-1700.	1.4	73
170	Sub-70 nm resolution tabletop microscopy at 138 nm using a compact laser–plasma EUV source. Optics Letters, 2010, 35, 2337.	3.3	46
171	Micro- and Nanoprocessing of Polymers Using a Laser Plasma Extreme Ultraviolet Source. Acta Physica Polonica A, 2010, 117, 384-390.	0.5	13
172	Imaging and Patterning on Nanometer Scale Using Coherent EUV Light. Acta Physica Polonica A, 2010, 117, 403-407.	0.5	1
173	Ablation and surface modifications of PMMA usingÂaÂlaser-plasma EUV source. Applied Physics B: Lasers and Optics, 2009, 96, 727-730.	2.2	48
174	Surface changes of solids under intense EUV irradiation using a laser-plasma source. Proceedings of SPIE, 2009, , .	0.8	5
175	Creation of Nanostructures on Polymer Surfaces Irradiated with Extreme Ultraviolet Pulses. Acta Physica Polonica A, 2009, 116, S-108-S-110.	0.5	1
176	Detection of surface changes of materials caused by intense irradiation with laser-plasma EUV source utilizing scattered or luminescent radiation excited with the EUV pulses. Applied Physics B: Lasers and Optics, 2008, 91, 21-24.	2.2	5
177	EUV emission from solids illuminated with a laser-plasma EUV source. Applied Physics B: Lasers and Optics, 2008, 93, 737-741.	2.2	13
178	Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for technology, biomedical, and metrology applications. , 2008, , .		2
179	Applications of Laser Plasma EUV Source Based on a Gas Puff Target. AIP Conference Proceedings, 2008, , .	0.4	2
180	Design and study of efficiency of EUV condensor for illumination of large samples. Proceedings of SPIE, 2008, , .	0.8	0

HENRYK FIEDOROWICZ

#	Article	IF	CITATIONS
181	Micro- and nanoprocessing of organic polymers using a compact laser plasma EUV source equipped with EUV optical systems. Proceedings of SPIE, 2007, , .	0.8	1
182	Response of inorganic materials to laser - plasma EUV radiation focused with a lobster eye collector. , 2007, , .		1
183	A High-Power Laser-Driven Source of Sub-nanosecond Soft X-Ray Pulses for Single-Shot Radiobiology Experiments. Radiation Research, 2007, 168, 382-387.	1.5	14
184	Optical and X-ray Emission Spectroscopy of High-Power Laser-Induced Dielectric Breakdown in Molecular Gases and Their Mixtures. Journal of Physical Chemistry A, 2006, 110, 12113-12120.	2.5	27
185	Micro- and nanoprocessing of organic polymers using a laser plasma XUV source. , 2006, 6346, 423.		Ο
186	EUV radiation from gas-puff laser plasma focused by multi-foil optics. , 2006, , .		0
187	Strong temperature effect on X-ray photo-etching of polytetrafluoroethylene using a 10ÂHz laser-plasma radiation source based on a gas puff target. Applied Physics B: Lasers and Optics, 2006, 82, 529-532.	2.2	33
188	<title>Application of laser plasma soft x-ray and EUV sources in micro- and nanotechnology</title> . , 2006, 6598, 90.		1
189	Multi-foil optic condenser for a laser plasma EUV source. Physica Scripta, 2006, T123, 131-134.	2.5	4
190	Wide band laser-plasma soft X-ray source using a gas puff target for direct photo-etching of polymers. , 2005, 5958, 279.		2
191	Passively Q-switched nanosecond pulse-train Nd:YAG laser system. , 2005, , .		0
192	Micromachining of organic polymers by direct photo-etching using a compact laser plasma soft x-ray source. , 2005, 5931, 141.		1
193	Photo-etching of organic polymers using a laser plasma x-ray source based on a gas puff target irradiated with the PALS facility. , 2005, 5777, 970.		Ο
194	Spectral and spatial measurements of a laser-produced plasma EUV source for 13.5 nm based on a double stream Xe/He gas puff target. , 2005, , .		1
195	Elongated high-density gas puff target for experiments on laser-driven x-ray lasers. , 2005, , .		Ο
196	Micromachining of organic polymers by X-ray photo-etching using a 10Hz laser-plasma radiation source. Microelectronic Engineering, 2005, 78-79, 452-456.	2.4	25
197	Pulsed X-ray radiography of a gas jet target for laser–matter interaction experiments with the use of a CCD detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 551, 139-144.	1.6	20
198	Large laser sparks for laboratory simulation of high-energy-density events in planetary atmospheres. , 2005, 5906, 336.		0

#	Article	IF	CITATIONS
199	Generation of soft X-rays and extreme ultraviolet (EUV) using a laser-irradiated gas puff target. Laser and Particle Beams, 2005, 23, .	1.0	19
200	Compact and debris-free laser plasma soft x-ray source based on a gas puff target. , 2005, , .		0
201	Compact laser plasma EUV source based on a gas puff target for metrology applications. Journal of Alloys and Compounds, 2005, 401, 99-103.	5.5	72
202	Bright High-Order Harmonic Generation From Long Gas Jets Toward Coherent Soft X-Ray Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 1329-1338.	2.9	9
203	Micromachining of organic polymers by direct photo-etching using a laser plasma X-ray source. Microelectronic Engineering, 2004, 73-74, 336-339.	2.4	16
204	High-brightness laser plasma soft X-ray source using a double-stream gas puff target irradiated with the Prague Asterix Laser System (PALS). Journal of Alloys and Compounds, 2004, 362, 67-70.	5.5	31
205	Short-wavelength ablation of solids: pulse duration and wavelength effects. , 2004, 5534, 95.		2
206	Ablation of various materials with intense XUV radiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507, 577-581.	1.6	27
207	Picosecond-laser-driven gas puff neonlike argon x-ray laser. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 203.	2.1	5
208	Time and space-resolved measurement of a gas-puff laser-plasma x-ray source. Physics of Plasmas, 2003, 10, 227-233.	1.9	17
209	Compact laser plasma EUV source based on a gas puff target for metrology. , 2003, , .		12
210	Spectral measurement of soft x-ray and EUV emissions from a laser-irradiated gas puff target using a transmission grating spectrometer. , 2003, 5064, 91.		0
211	Fine structures of human chromosomes observed by X-ray contact microscopy coupled with atomic force microscopy. European Physical Journal Special Topics, 2003, 104, 313-316.	0.2	3
212	Ablation of various materials with intense XUV radiation. , 2003, , 577-581.		1
213	Generation of bright low-divergence high-order harmonics in a long gas jet. Applied Physics Letters, 2002, 81, 3726-3728.	3.3	34
214	Demonstration of a Transient High Gain Soft X-Ray Laser for Neon-Like Argon. Japanese Journal of Applied Physics, 2002, 41, L133-L135.	1.5	8
215	Laser plasma radiation sources based on a laser-irradiated gas puff target for x-ray and EUV lithography technologies. , 2002, , .		0
216	Demonstration of a transient-gain nickel-like xenon-ion x-ray laser. Optics Letters, 2002, 27, 1911.	3.3	10

#	Article	IF	CITATIONS
217	Ablation of Organic Polymers and Elemental Solids Induced by Intense XUV Radiation. AIP Conference Proceedings, 2002, , .	0.4	8
218	Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target. Optics Letters, 2001, 26, 1403.	3.3	18
219	<title>Soft x-ray emission from a double-stream gas puff target irradiated by a nanosecond laser
pulse</title> . , 2001, , .		14
220	<title>Recent x-ray laser experiments on the COMET facility</title> ., 2001, , .		7
221	<title>Investigation of an EUV emission from a double-stream gas puff target irradiated by a nanosecond laser pulse</title> . , 2001, 4424, 410.		1
222	<title>Transient and capillary collisional x-ray lasers</title> ., 2001, , .		0
223	<title>Characterization of a laser-produced x-ray source with a double-stream gas puff target for x-ray and EUV lithography</title> . , 2001, , .		3
224	<title>Investigation of soft x-ray emission in the water window for microscopy using a double-stream
gas puff target irradiated with the Prague Asterix Laser System (PALS)</title> . , 2001, , .		6
225	<title>Demonstration of a neon-like argon x-ray laser using a short-pulse laser-irradiated gas puff
target</title> . , 2001, , .		Ο
226	<title>Characterization and optimization of a laser-produced x-ray source with a double-stream gas puff target</title> . , 2001, , .		3
227	Low-energy ion emission from a xenon gas-puff laser-plasma X-ray source. Applied Physics B: Lasers and Optics, 2001, 72, 385-387.	2.2	3
228	Laser systems for generation of x-ray radiation. , 2000, , .		0
229	Strong extreme ultraviolet emission from a double-stream xenon/helium gas puff target irradiated with a Nd:YAG laser. Optics Communications, 2000, 184, 161-167.	2.1	86
230	Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup. Applied Physics B: Lasers and Optics, 2000, 70, 305-308.	2.2	91
231	The x-ray emission spectra of multicharged xenon ions in a gas puff laser-produced plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 113-122.	1.5	19
232	Spectroscopic signature of strong dielectronic recombination in highly ionized xenon produced by irradiating a gas puff with laser. Physical Review A, 1999, 59, 188-194.	2.5	15
233	Investigation of soft X-ray emission from a gas puff target irradiated with a Nd:YAG laser. Optics Communications, 1999, 163, 103-114.	2.1	69
234	Characterization of Laser-Produced Plasmas from High Pressure Gas-Puff Using Space Resolved X-Ray Spectroscopy The Review of Laser Engineering, 1999, 27, 351-354.	0.0	0

#	Article	IF	CITATIONS
235	X-ray emission in the 'water window' from a nitrogen gas puff target irradiated with a nanosecond Nd:glass laser pulse. Applied Physics B: Lasers and Optics, 1998, 67, 391-393.	2.2	29
236	Investigation of XUV amplification with Ni-like xenon ions using laser-produced gas puff plasmas. Optics Communications, 1998, 153, 368-374.	2.1	11
237	Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz. Applied Optics, 1998, 37, 7085.	2.1	51
238	Dielectronic satellites of the Hel ² line of the Si XIII ion in a dense laser plasma. Quantum Electronics, 1998, 28, 677-680.	1.0	6
239	Interaction of laser radiation with a dense gas target. Quantum Electronics, 1997, 27, 68-71.	1.0	14
240	Precision measurements of the wavelengths of spectral lines of multiply charged krypton and argon ions formed in a gas target heated by laser radiation. Quantum Electronics, 1997, 27, 691-695.	1.0	8
241	Determination of the temperature of a plasma channel formed by a nanosecond laser pulse interacting with a dense gas target. Quantum Electronics, 1997, 27, 334-335.	1.0	3
242	Measurements of the ground-state ionization energy and wavelengths for the (n= 4 - 10) lines of O VII. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 4453-4462.	1.5	10
243	High-resolution measurement, line identification, and spectral modeling of the Kl̇̀ spectrum of heliumlike argon emitted by a laser-produced plasma using a gas-puff target. Physical Review E, 1997, 55, 3773-3776.	2.1	19
244	<title>Formation of elongated laser sparks in gas puff targets by nanosecond laser pulses</title> . , 1997, 3156, 296.		3
245	<title>X-ray lasers: status and perspectives</title> . , 1997, , .		0
246	<title>Soft x-ray radiation from plasma and microcapillary waveguides</title> . , 1997, , .		5
247	X-Ray Lasers, Operation and Applications. Acta Physica Polonica A, 1997, 91, 945-951.	0.5	0
248	Self-photopumped neonlike x-ray laser. Optics Letters, 1996, 21, 408.	3.3	19
249	Demonstration of Soft X-Ray Lasing with Neonlike Argon and Nickel-like Xenon lons Using a Laser-Irradiated Gas Puff Target. Physical Review Letters, 1996, 76, 415-418.	7.8	56
250	<title>Debrisless laser-produced x-ray source with a gas puff target</title> . , 1996, 2723, 310.		4
251	XUV emission from an elongated plasma column produced using a high-power laser with a gas puff target. Laser and Particle Beams, 1996, 14, 253-260.	1.0	4
252	Optimization of xâ€ray sources for proximity lithography produced by a high average power Nd:glass laser. Journal of Applied Physics, 1996, 79, 8258-8268.	2.5	29

HENRYK FIEDOROWICZ

#	Article	IF	CITATIONS
253	X-ray laser experiments using laser-irradiated gas puff targets at the ASTERIX IV facility. , 1995, , .		3
254	Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments. AIP Conference Proceedings, 1995, , .	0.4	5
255	Generation of soft x-ray radiation by laser irradiation of a gas puff xenon target. , 1995, , .		1
256	Investigation of an x-ray source based on a gas puff heated by laser radiation. Quantum Electronics, 1995, 25, 19-22.	1.0	6
257	Dielectronic 3l4l′ Na-like satellites to Ne-like krypton resonance lines. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 1203.	2.1	12
258	Generation of nanosecond soft X-ray pulses as a result of interaction of the Nd: glass laser radiation with gas puff targets. Laser and Particle Beams, 1994, 12, 471-483.	1.0	16
259	Influence of an external strong magnetic field on hydrodynamic parameters and radiation emission of laser produced plasma. Physica Scripta, 1994, 50, 72-81.	2.5	15
260	The dielectronic satellites to the 2s-3pNe-like krypton resonance lines. Physica Scripta, 1994, 50, 106-109.	2.5	21
261	Xâ€ray emission from laserâ€irradiated gas puff targets. Applied Physics Letters, 1993, 62, 2778-2780.	3.3	98
262	Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma. Laser and Particle Beams, 1992, 10, 767-776.	1.0	36
263	X-ray and RHEED Characterization of Ge lons-Implanted Si Crystals Subjected to Pulsed-Laser Annealing. Crystal Research and Technology, 1992, 27, 959-964.	1.3	3
264	X-ray transmission grating spectrometer with CCD detector for laser plasma studies. Laser and Particle Beams, 1991, 9, 579-591.	1.0	9
265	Effect of the hydrodynamic instability on the burn-through time measurements. Laser and Particle Beams, 1990, 8, 191-195.	1.0	1
266	Energy transport through thin aluminum foils in laser-target experiment. Laser and Particle Beams, 1989, 7, 3-14.	1.0	1
267	Measurements Of The Soft X-Ray Emission From Laser Plasma Using Silicon Photodiodes. Proceedings of SPIE, 1989, 1140, 518.	0.8	Ο
268	Laser-driven implosion studies using the soft X-ray emission measurements. Laser and Particle Beams, 1988, 6, 321-326.	1.0	2
269	THE POSSIBILITIES OF THE USE OF REPLICA X-RAY IMAGING MIRRORS IN PLASMA DIAGNOSTICS. Journal De Physique Colloque, 1988, 49, C1-231-C1-234.	0.2	0
270	DOPPLER SHIFT IN X-RAY SPECTRUM FOR LASER-IMPLODED SPHERICAL MICROSHELLS. Journal De Physique Colloque, 1988, 49, C1-369-C1-389.	0.2	0

#	Article	IF	CITATIONS
271	Experimental study of laser-driven compression of spherical microshells. Laser and Particle Beams, 1986, 4, 515-519.	1.0	1
272	Time-delayed filaments of prolonged durability on laser irradiated microspheres. Optics Communications, 1983, 47, 127-130.	2.1	3
273	Characterization of soft X-ray source using laser-irradiated gas puff targets. , 0, , .		ο
274	Laser plasma light source based on a gas puff target for EUV metrology applications. , 0, , .		1
275	Ablation of organic polymers by direct exposure to radiation from a laser plamsa X-ray source. , 0, , .		2