List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5756299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials, 2016, 1, .	48.7	1,383
2	Twoâ€Đimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channelâ€Wall Functionalization. Angewandte Chemie - International Edition, 2015, 54, 2986-2990.	13.8	572
3	Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. Journal of the American Chemical Society, 2017, 139, 2428-2434.	13.7	519
4	Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening. Journal of the American Chemical Society, 2015, 137, 7079-7082.	13.7	351
5	Locking Covalent Organic Frameworks with Hydrogen Bonds: General and Remarkable Effects on Crystalline Structure, Physical Properties, and Photochemical Activity. Journal of the American Chemical Society, 2015, 137, 3241-3247.	13.7	320
6	Throughput analysis of production systems: recent advances and future topics. International Journal of Production Research, 2009, 47, 3823-3851.	7.5	298
7	Controlled Synthesis of Conjugated Microporous Polymer Films: Versatile Platforms for Highly Sensitive and Labelâ€Free Chemo―and Biosensing. Angewandte Chemie - International Edition, 2014, 53, 4850-4855.	13.8	258
8	Multiple-component covalent organic frameworks. Nature Communications, 2016, 7, 12325.	12.8	227
9	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie - International Edition, 2017, 56, 4982-4986.	13.8	217
10	A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angewandte Chemie - International Edition, 2020, 59, 16587-16593.	13.8	214
11	A Photoresponsive Smart Covalent Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 8704-8707.	13.8	200
12	Light-Emitting Covalent Organic Frameworks: Fluorescence Improving via Pinpoint Surgery and Selective Switch-On Sensing of Anions. Journal of the American Chemical Society, 2018, 140, 12374-12377.	13.7	191
13	Ï€â€Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angewandte Chemie - International Edition, 2015, 54, 13594-13598.	13.8	182
14	lonic liquid-decorated COF and its covalent composite aerogel for selective CO ₂ adsorption and catalytic conversion. Journal of Materials Chemistry A, 2019, 7, 4689-4698.	10.3	152
15	Creating Well-Defined Hexabenzocoronene in Zirconium Metal–Organic Framework by Postsynthetic Annulation. Journal of the American Chemical Society, 2019, 141, 2054-2060.	13.7	148
16	Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity. Angewandte Chemie - International Edition, 2015, 54, 11540-11544.	13.8	140
17	Towards covalent organic frameworks with predesignable and aligned open docking sites. Chemical Communications, 2014, 50, 6161-6163.	4.1	136
18	Twoâ€Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channelâ€Wall Functionalization. Angewandte Chemie, 2015, 127, 3029-3033.	2.0	129

#	Article	IF	CITATIONS
19	Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. Journal of the American Chemical Society, 2021, 143, 18052-18060.	13.7	127
20	Tailor-Made Pyrazolide-Based Metal–Organic Frameworks for Selective Catalysis. Journal of the American Chemical Society, 2018, 140, 6383-6390.	13.7	124
21	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie - International Edition, 2016, 55, 3049-3053.	13.8	121
22	A backbone design principle for covalent organic frameworks: the impact of weakly interacting units on CO ₂ adsorption. Chemical Communications, 2017, 53, 4242-4245.	4.1	113
23	Photosensitizerâ€Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production. Advanced Science, 2019, 6, 1802059.	11.2	108
24	Designed synthesis of double-stage two-dimensional covalent organic frameworks. Scientific Reports, 2015, 5, 14650.	3.3	107
25	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	13.7	106
26	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	13.7	102
27	Flexible and Hierarchical Metal–Organic Framework Composites for Highâ€Performance Catalysis. Angewandte Chemie - International Edition, 2018, 57, 8916-8920.	13.8	98
28	Enhancing Pore-Environment Complexity Using a Trapezoidal Linker: Toward Stepwise Assembly of Multivariate Quinary Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 12328-12332.	13.7	78
29	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	13.7	73
30	Pd NP-Loaded and Covalently Cross-Linked COF Membrane Microreactor for Aqueous CBs Dechlorination at Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 20448-20457.	8.0	70
31	Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. Journal of the American Chemical Society, 2019, 141, 3129-3136.	13.7	70
32	Semiconductive Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared Detection. ACS Applied Materials & Interfaces, 2020, 12, 37427-37434.	8.0	67
33	Pd loaded and covalent-organic framework involved chitosan aerogels and their application forÂcontinuous flow-through aqueous CB decontamination. Journal of Materials Chemistry A, 2018, 6, 11140-11146.	10.3	64
34	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie - International Edition, 2021, 60, 10806-10813.	13.8	63
35	Editing Light Emission with Stable Crystalline Covalent Organic Frameworks via Wall Surface Perturbation. Angewandte Chemie - International Edition, 2021, 60, 19419-19427.	13.8	60
36	A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angewandte Chemie, 2020, 132, 16730-16736.	2.0	59

#	Article	IF	CITATIONS
37	Highâ€Precision Size Recognition and Separation in Synthetic 1D Nanochannels. Angewandte Chemie - International Edition, 2019, 58, 15922-15927.	13.8	50
38	High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles. Scientific Reports, 2014, 4, 7228.	3.3	48
39	Engineering porous organic polymers for carbon dioxide capture. Science China Chemistry, 2017, 60, 1007-1014.	8.2	46
40	Heteroatom-Doped Carbon Electrocatalysts Derived from Nanoporous Two-Dimensional Covalent Organic Frameworks for Oxygen Reduction and Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 5481-5488.	5.0	46
41	Semiconductive Covalent Organic Frameworks: Structural Design, Synthesis, and Application. Small Structures, 2020, 1, 2000021.	12.0	43
42	Cascade exciton-pumping engines with manipulated speed and efficiency in light-harvesting porous l€-network films. Scientific Reports, 2015, 5, 8867.	3.3	37
43	Urban flood risk assessment using storm characteristic parameters sensitive to catchment-specific drainage system. Science of the Total Environment, 2019, 659, 1362-1369.	8.0	37
44	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	9.0	35
45	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie, 2017, 129, 5064-5068.	2.0	33
46	Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nature Communications, 2021, 12, 6747.	12.8	33
47	Long-chain solid organic polysulfide cathode for high-capacity secondary lithium batteries. Energy Storage Materials, 2018, 12, 30-36.	18.0	31
48	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie, 2016, 128, 3101-3105.	2.0	25
49	De Novo Fabrication of Large-Area and Self-Standing Covalent Organic Framework Films for Efficient Separation. ACS Applied Materials & Interfaces, 2021, 13, 44806-44813.	8.0	20
50	Recent Advances of Covalent Organic Frameworks in Chemical Sensing. Chemical Research in Chinese Universities, 2022, 38, 339-349.	2.6	19
51	Flexible and Hierarchical Metal–Organic Framework Composites for Highâ€Performance Catalysis. Angewandte Chemie, 2018, 130, 9054-9058.	2.0	18
52	From Manual Operation to Collaborative Robot Assembly: An Integrated Model of Productivity and Ergonomic Performance. IEEE Robotics and Automation Letters, 2021, 6, 895-902.	5.1	14
53	Highâ€Precision Size Recognition and Separation in Synthetic 1D Nanochannels. Angewandte Chemie, 2019, 131, 16069-16074	2.0	13
54	Covalent organic frameworks for applications in lithium batteries. Journal of Polymer Science, 2022, 60, 2225-2238.	3.8	13

#	Article	IF	CITATIONS
55	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie, 2021, 133, 10901-10908.	2.0	8
56	Analysis of assembly-time performance (ATP) in manufacturing operations with collaborative robots: a systems approach. International Journal of Production Research, 2022, 60, 277-296.	7.5	8
57	Nickel–heterocumulene complexes stabilized by trimethylphosphine: Synthesis, characterization and catalytic application in organozinc coupling with CS2. Inorganica Chimica Acta, 2013, 394, 446-451.	2.4	7
58	Metal-Organic Frameworks: Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production (Adv. Sci. 11/2019). Advanced Science, 2019, 6, 1970064.	11.2	3
59	Editing Light Emission with Stable Crystalline Covalent Organic Frameworks via Wall Surface Perturbation. Angewandte Chemie, 2021, 133, 19568-19576.	2.0	0