List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5755967/publications.pdf Version: 2024-02-01

	147786	182417
3,273	31	51
citations	h-index	g-index
112	112	2770
docs citations	times ranked	citing authors
	3,273 citations 112 docs citations	3,273 31 citations h-index 112 112 docs citations 112 times ranked

ΟιμΜ Τλααδως

#	Article	IF	CITATIONS
1	Lignin-containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier. Industrial Crops and Products, 2022, 175, 114287.	5.2	24
2	Micromechanics of Tensile Strength of Thermo-mechanical Pulp Reinforced Poly(lactic) Acid Biodegradable Composites. Journal of Natural Fibers, 2022, 19, 9931-9944.	3.1	6
3	Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes. International Journal of Biological Macromolecules, 2022, 205, 220-230.	7.5	31
4	Electrospray Deposition of Cellulose Nanofibers on Paper: Overcoming the Limitations of Conventional Coating. Nanomaterials, 2022, 12, 79.	4.1	13
5	Micro- and Nanofibrillated Cellulose from Annual Plant-Sourced Fibers: Comparison between Enzymatic Hydrolysis and Mechanical Refining. Nanomaterials, 2022, 12, 1612.	4.1	11
6	Sustainable plastic composites by polylactic acid-starch blends and bleached kraft hardwood fibers. Composites Part B: Engineering, 2022, 238, 109901.	12.0	13
7	Artificial neural network for aspect ratio prediction of lignocellulosic micro/nanofibers. Cellulose, 2022, 29, 5609-5622.	4.9	6
8	Approaching a Zero-Waste Strategy in Rapeseed (Brassica napus) Exploitation: Sustainably Approaching Bio-Based Polyethylene Composites. Sustainability, 2022, 14, 7942.	3.2	7
9	COLLABORATION BETWEEN UNIVERSITY AND DUAL TRAINING CENTER: THE CASE OF PAPER MANUFACTURING AND RECYCLING PROCESSES. EDULEARN Proceedings, 2022, , .	0.0	0
10	Indoor PM2.5 removal efficiency of two different non-thermal plasma systems. Journal of Environmental Management, 2021, 278, 111515.	7.8	9
11	Stiffening Potential of Lignocellulosic Fibers in Fully Biobased Composites: The Case of Abaca Strands, Spruce TMP Fibers, Recycled Fibers from ONP, and Barley TMP Fibers. Polymers, 2021, 13, 619.	4.5	10
12	Nanocellulose characterization challenges. BioResources, 2021, 16, 4382-4410.	1.0	34
13	Comparative assessment of cellulose nanofibers and calcium alginate beads for continuous Cu(II) adsorption in packed columns: the influence of water and surface hydrophobicity. Cellulose, 2021, 28, 4327-4344.	4.9	12
14	Interface Strength and Fiber Content Influence on Corn Stover Fibers Reinforced Bio-Polyethylene Composites Stiffness. Polymers, 2021, 13, 768.	4.5	9
15	Monitoring fibrillation in the mechanical production of lignocellulosic micro/nanofibers from bleached spruce thermomechanical pulp. International Journal of Biological Macromolecules, 2021, 178, 354-362.	7.5	16
16	Valorization of Date Palm Waste for Plastic Reinforcement: Macro and Micromechanics of Flexural Strength. Polymers, 2021, 13, 1751.	4.5	10
17	The Integral Utilization of Date Palm Waste to Produce Plastic Composites. Polymers, 2021, 13, 2335.	4.5	7
18	Cellulose nanofibrils reinforced PBAT/TPS blends: Mechanical and rheological properties. International Journal of Biological Macromolecules, 2021, 183, 267-275.	7.5	34

#	Article	IF	CITATIONS
19	SUSTAINABILITY EDUCATION VIA ENGAGING EXPERIENCES BASED ON THE DEVELOPMENT OF CELLULOSE NANOFIBERS. , 2021, , .		0
20	Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis. Nanomaterials, 2021, 11, 2077.	4.1	18
21	Exploring the Potential of Cotton Industry Byproducts in the Plastic Composite Sector: Macro and Micromechanics Study of the Flexural Modulus. Materials, 2021, 14, 4787.	2.9	4
22	Influence of pretreatment and mechanical nanofibrillation energy on properties of nanofibers from Aspen cellulose. Cellulose, 2021, 28, 9187-9206.	4.9	22
23	Correlation between rheological measurements and morphological features of lignocellulosic micro/nanofibers from different softwood sources. International Journal of Biological Macromolecules, 2021, 187, 789-799.	7.5	17
24	Chemical-free production of lignocellulosic micro- and nanofibers from high-yield pulps: Synergies, performance, and feasibility. Journal of Cleaner Production, 2021, 313, 127914.	9.3	22
25	Characterization of CaCO3 Filled Poly(lactic) Acid and Bio Polyethylene Materials for Building Applications. Polymers, 2021, 13, 3323.	4.5	6
26	Micro/nanostructured lignonanocellulose obtained from steam-exploded sugarcane bagasse. Cellulose, 2021, 28, 10163-10182.	4.9	8
27	Valorization Strategy for Leather Waste as Filler for High-Density Polyethylene Composites: Analysis of the Thermal Stability, Insulation Properties and Chromium Leaching. Polymers, 2021, 13, 3313.	4.5	4
28	Tuning morphology and structure of non-woody nanocellulose: Ranging between nanofibers and nanocrystals. Industrial Crops and Products, 2021, 171, 113877.	5.2	28
29	Effect of enzymatic treatment (endo-glucanases) of fiber and mechanical lignocellulose nanofibers addition on physical and mechanical properties of binderless high-density fiberboards made from wheat straw. Journal of Building Engineering, 2021, 44, 103392.	3.4	4
30	Biobased polyamide reinforced with natural fiber composites. , 2021, , 141-165.		2
31	Potentiometric back titration as a robust and simple method for specific surface area estimation of lignocellulosic fibers. Cellulose, 2021, 28, 10815-10825.	4.9	10
32	Effective Young's Modulus Estimation of Natural Fibers through Micromechanical Models: The Case of Henequen Fibers Reinforced-PP Composites. Polymers, 2021, 13, 3947.	4.5	8
33	ENVIRONMENTAL EDUCATION IN THE CHEMICAL ENGINEERING DEGREE: EXPLORING THE POTENTIAL OF BIOPLASTICS AND BIOCOMPOSITES. , 2021, , .		Ο
34	Development of high-performance binderless fiberboards from wheat straw residue. Construction and Building Materials, 2020, 232, 117247.	7.2	24
35	Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications. International Journal of Biological Macromolecules, 2020, 145, 92-99.	7.5	116
36	Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 2020, 144, 112061.	5.2	135

#	Article	IF	CITATIONS
37	Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. International Journal of Biological Macromolecules, 2020, 145, 1199-1207.	7.5	32
38	Impact Strength and Water Uptake Behavior of Bleached Kraft Softwood-Reinforced PLA Composites as Alternative to PP-Based Materials. Polymers, 2020, 12, 2144.	4.5	12
39	Leather Waste to Enhance Mechanical Performance of High-Density Polyethylene. Polymers, 2020, 12, 2016.	4.5	16
40	Study on the Macro and Micromechanics Tensile Strength Properties of Orange Tree Pruning Fiber as Sustainable Reinforcement on Bio-Polyethylene Compared to Oil-Derived Polymers and Its Composites. Polymers, 2020, 12, 2206.	4.5	12
41	Horticultural Plant Residues as New Source for Lignocellulose Nanofibers Isolation: Application on the Recycling Paperboard Process. Molecules, 2020, 25, 3275.	3.8	13
42	Effect of NaOH Treatment on the Flexural Modulus of Hemp Core Reinforced Composites and on the Intrinsic Flexural Moduli of the Fibers. Polymers, 2020, 12, 1428.	4.5	4
43	Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young's Modulus. Polymers, 2020, 12, 1693.	4.5	25
44	Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Character. Polymers, 2020, 12, 1071.	4.5	13
45	Effect of nanofiber addition on the physical–mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose, 2020, 27, 10811-10823.	4.9	16
46	Enhancing the Mechanical Performance of Bleached Hemp Fibers Reinforced Polyamide 6 Composites: A Competitive Alternative to Commodity Composites. Polymers, 2020, 12, 1041.	4.5	18
47	Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials. International Journal of Biological Macromolecules, 2020, 155, 81-90.	7.5	23
48	Oxidative treatments for cellulose nanofibers production: a comparative study between TEMPO-mediated and ammonium persulfate oxidation. Cellulose, 2020, 27, 10671-10688.	4.9	43
49	High-Yield Lignocellulosic Fibers from Date Palm Biomass as Reinforcement in Polypropylene Composites: Effect of Fiber Treatment on Composite Properties. Polymers, 2020, 12, 1423.	4.5	13
50	Evolution of Interfacial Shear Strength and Mean Intrinsic Single Strength in Biobased Composites from Bio-Polyethylene and Thermo-Mechanical Pulp-Corn Stover Fibers. Polymers, 2020, 12, 1308.	4.5	15
51	Topography of the Interfacial Shear Strength and the Mean Intrinsic Tensile Strength of Hemp Fibers as a Reinforcement of Polypropylene. Materials, 2020, 13, 1012.	2.9	4
52	Research on the Strengthening Advantages on Using Cellulose Nanofibers as Polyvinyl Alcohol Reinforcement. Polymers, 2020, 12, 974.	4.5	20
53	Lignocellulosic nanofibers for the reinforcement of brown line paper in industrial water systems. Cellulose, 2020, 27, 10799-10809.	4.9	5
54	Recycling dyed cotton textile byproduct fibers as polypropylene reinforcement. Textile Reseach Journal, 2019, 89, 2113-2125.	2.2	31

#	Article	IF	CITATIONS
55	Flexural Properties and Mean Intrinsic Flexural Strength of Old Newspaper Reinforced Polypropylene Composites. Polymers, 2019, 11, 1244.	4.5	12
56	Determination of Mean Intrinsic Flexural Strength and Coupling Factor of Natural Fiber Reinforcement in Polylactic Acid Biocomposites. Polymers, 2019, 11, 1736.	4.5	24
57	Modeling the Stiffness of Coupled and Uncoupled Recycled Cotton Fibers Reinforced Polypropylene Composites. Polymers, 2019, 11, 1725.	4.5	11
58	TEMPO-Oxidized Cellulose Nanofibers: A Potential Bio-Based Superabsorbent for Diaper Production. Nanomaterials, 2019, 9, 1271.	4.1	52
59	On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers. Materials, 2019, 12, 1584.	2.9	6
60	Towards the development of highly transparent, flexible and water-resistant bio-based nanopapers: tailoring physico-mechanical properties. Cellulose, 2019, 26, 6917-6932.	4.9	12
61	Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of Cleaner Production, 2019, 226, 64-73.	9.3	52
62	Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands. Industrial Crops and Products, 2019, 132, 319-326.	5.2	40
63	Biobased Composites from Biobased-Polyethylene and Barley Thermomechanical Fibers: Micromechanics of Composites. Materials, 2019, 12, 4182.	2.9	27
64	Explorative Study on the Use of CurauÃ; Reinforced Polypropylene Composites for the Automotive Industry. Materials, 2019, 12, 4185.	2.9	18
65	TEMPO-oxidized cellulose nanofibers as potential Cu(II) adsorbent for wastewater treatment. Cellulose, 2019, 26, 903-916.	4.9	45
66	Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 2018, 25, 269-280.	4.9	52
67	Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves. Journal of Cleaner Production, 2018, 172, 233-238.	9.3	17
68	Combined effect of sodium carboxymethyl cellulose, cellulose nanofibers and drainage aids in recycled paper production process. Carbohydrate Polymers, 2018, 183, 201-206.	10.2	18
69	Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries. Cellulose, 2018, 25, 357-366.	4.9	8
70	Extending the value chain of corn agriculture by evaluating technical feasibility and the quality of the interphase of chemo-thermomechanical fiber from corn stover reinforced polypropylene biocomposites. Composites Part B: Engineering, 2018, 137, 16-22.	12.0	17
71	Towards a new generation of functional fiber-based packaging: cellulose nanofibers for improved barrier, mechanical and surface properties. Cellulose, 2018, 25, 683-695.	4.9	21
72	Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive. International Journal of Biological Macromolecules, 2018, 108, 927-935.	7.5	56

#	Article	IF	CITATIONS
73	Nanofibrillated Cellulose as Functional Ingredient in Emulsion-Type Meat Products. Food and Bioprocess Technology, 2018, 11, 1393-1401.	4.7	21
74	Study of the flexural modulus of lignocellulosic fibers reinforced bio-based polyamide11 green composites. Composites Part B: Engineering, 2018, 152, 126-132.	12.0	23
75	Polyelectrolyte complexes for assisting the application of lignocellulosic micro/nanofibers in papermaking. Cellulose, 2018, 25, 6083-6092.	4.9	12
76	Bio-polyethylene reinforced with thermomechanical pulp fibers: Mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling. Composites Part B: Engineering, 2018, 153, 70-77.	12.0	89
77	PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydrate Polymers, 2018, 199, 51-57.	10.2	121
78	Bleached Kraft Eucalyptus Fibers as Reinforcement of Poly(Lactic Acid) for the Development of High-Performance Biocomposites. Polymers, 2018, 10, 699.	4.5	12
79	Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 2018, 10, 717.	4.5	19
80	Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties. Carbohydrate Polymers, 2017, 163, 20-27.	10.2	64
81	The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: From residue to value-added products. Industrial Crops and Products, 2017, 99, 27-33.	5.2	48
82	Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production method. International Journal of Biological Macromolecules, 2017, 99, 29-36.	7.5	21
83	High electrical and electrochemical properties in bacterial cellulose/polypyrrole membranes. European Polymer Journal, 2017, 91, 1-9.	5.4	38
84	Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices. Carbohydrate Polymers, 2017, 165, 86-95.	10.2	70
85	The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose, 2017, 24, 2605-2618.	4.9	39
86	Bio composite from bleached pine fibers reinforced polylactic acid as a replacement of glass fiber reinforced polypropylene, macro and micro-mechanics of the Young's modulus. Composites Part B: Engineering, 2017, 125, 203-210.	12.0	50
87	Cardboard boxes as raw material for high-performance papers through the implementation of alternative technologies: More than closing the loop. Journal of Industrial and Engineering Chemistry, 2017, 54, 52-58.	5.8	10
88	Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. International Journal of Biological Macromolecules, 2017, 105, 664-670.	7.5	19
89	Behavior of the interphase of dyed cotton residue flocks reinforced polypropylene composites. Composites Part B: Engineering, 2017, 128, 200-207.	12.0	39
90	Immobilization of antimicrobial peptides onto cellulose nanopaper. International Journal of Biological Macromolecules, 2017, 105, 741-748.	7.5	13

#	Article	IF	CITATIONS
91	Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose, 2017, 24, 3943-3954.	4.9	63
92	Mechanical and micromechanical tensile strength of eucalyptus bleached fibers reinforced polyoxymethylene composites. Composites Part B: Engineering, 2017, 116, 333-339.	12.0	53
93	Sugarcane Bagasse Reinforced Composites: Studies on the Young's Modulus and Macro and Micro-Mechanics. BioResources, 2017, 12, .	1.0	15
94	Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost. Polymers, 2017, 9, 557.	4.5	76
95	Nanofibrillated cellulose as an additive in papermaking process. , 2017, , 153-173.		6
96	Evaluation of Thermal and Thermomechanical Behaviour of Bio-Based Polyamide 11 Based Composites Reinforced with Lignocellulosic Fibres. Polymers, 2017, 9, 522.	4.5	26
97	High-Yield Pulp from Brassica napus to Manufacture Packaging Paper. BioResources, 2017, 12, .	1.0	9
98	Towards a good interphase between bleached kraft softwood fibers and poly(lactic) acid. Composites Part B: Engineering, 2016, 99, 514-520.	12.0	54
99	Remarkable increase of paper strength by combining enzymatic cellulose nanofibers in bulk and TEMPO-oxidized nanofibers as coating. Cellulose, 2016, 23, 3939-3950.	4.9	42
100	Nanofibrillated cellulose as an additive in papermaking process: A review. Carbohydrate Polymers, 2016, 154, 151-166.	10.2	205
101	Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose, 2016, 23, 3077-3088.	4.9	36
102	The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose, 2016, 23, 1433-1445.	4.9	64
103	The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Industrial Crops and Products, 2016, 86, 295-300.	5.2	101
104	Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydrate Polymers, 2016, 139, 99-105.	10.2	85
105	Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose, 2016, 23, 837-852.	4.9	103
106	ENCOURAGING STUDENTS TO DEVELOP THEIR OWN PROJECT THROUGH THE INCREASE OF THE NUMBER OF PRACTICAL SESSIONS. , 2016, , .		0
107	CASE STUDY: COMPETENCES IN THE LAST COURSE IN TECHNICAL CHEMICAL ENGINEERING AND SOME COMPANIES DEMAND. EDULEARN Proceedings, 2016, , .	0.0	0
108	EXPERIENCES OF WORKPLACE STAY WITHIN A RESEARCH GROUP. , 2016, , .		0

7

#	Article	IF	CITATIONS
109	Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications. BioResources, 2015, 10, .	1.0	66
110	Enzymatic Refining and Cellulose Nanofiber Addition in Papermaking Processes from Recycled and Deinked Slurries. BioResources, 2015, 10, .	1.0	16
111	Are Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products?. Environmental Science & Technology, 2015, 49, 12206-12213.	10.0	61
112	Study of the Flexural Strength of Recycled Dyed Cotton Fiber Reinforced Polypropylene Composites and the Effect of the Use of Maleic Anhydride as Coupling Agent. Journal of Natural Fibers, 0, , 1-13.	3.1	1