Ruslan Medzhitov

List of Publications by Citations

Source: https://exaly.com/author-pdf/5755964/ruslan-medzhitov-publications-by-citations.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68,031 138 125 70 h-index g-index citations papers 8.6 76,898 26.7 138 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
125	Innate immune recognition. <i>Annual Review of Immunology</i> , 2002 , 20, 197-216	34.7	5854
124	Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. <i>Nature</i> , 2001 , 413, 732-8	50.4	4755
123	A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. <i>Nature</i> , 1997 , 388, 394-7	50.4	4204
122	Origin and physiological roles of inflammation. <i>Nature</i> , 2008 , 454, 428-35	50.4	3569
121	Toll-like receptor control of the adaptive immune responses. <i>Nature Immunology</i> , 2004 , 5, 987-95	19.1	3232
120	Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. <i>Cell</i> , 2004 , 118, 229-41	56.2	3222
119	Toll-like receptors and innate immunity. <i>Nature Reviews Immunology</i> , 2001 , 1, 135-45	36.5	3047
118	Innate immunity: the virtues of a nonclonal system of recognition. <i>Cell</i> , 1997 , 91, 295-8	56.2	1904
117	Recognition of microorganisms and activation of the immune response. <i>Nature</i> , 2007 , 449, 819-26	50.4	1894
116	Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. <i>Science</i> , 2003 , 299, 1033-6	33.3	1763
115	Decoding the patterns of self and nonself by the innate immune system. <i>Science</i> , 2002 , 296, 298-300	33.3	1635
114	Regulation of adaptive immunity by the innate immune system. <i>Science</i> , 2010 , 327, 291-5	33.3	1447
113	Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. <i>Nature</i> , 2014 , 513, 559-63	50.4	1318
112	MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. <i>Molecular Cell</i> , 1998 , 2, 253-8	17.6	1275
111	Toll-like receptors control activation of adaptive immune responses. <i>Nature Immunology</i> , 2001 , 2, 947-	50 19.1	1164
110	IRAK-M is a negative regulator of Toll-like receptor signaling. <i>Cell</i> , 2002 , 110, 191-202	56.2	1148
109	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. <i>Nature Medicine</i> , 2005 , 11, 1173-9	50.5	1133

(2015-2015)

108	Control of adaptive immunity by the innate immune system. <i>Nature Immunology</i> , 2015 , 16, 343-53	19.1	1078
107	Innate immune recognition: mechanisms and pathways. <i>Immunological Reviews</i> , 2000 , 173, 89-97	11.3	1067
106	Toll-like receptor signaling pathways. <i>Science</i> , 2003 , 300, 1524-5	33.3	1032
105	Disease tolerance as a defense strategy. <i>Science</i> , 2012 , 335, 936-41	33.3	1016
104	The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2247-52	11.5	987
103	Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. <i>Journal of Experimental Medicine</i> , 2003 , 198, 513-20	16.6	968
102	Gene-specific control of inflammation by TLR-induced chromatin modifications. <i>Nature</i> , 2007 , 447, 972-	-8 50.4	915
101	Inflammation 2010: new adventures of an old flame. <i>Cell</i> , 2010 , 140, 771-6	56.2	909
100	Longitudinal analyses reveal immunological misfiring in severe COVID-19. <i>Nature</i> , 2020 , 584, 463-469	50.4	901
99	TIRAP: an adapter molecule in the Toll signaling pathway. <i>Nature Immunology</i> , 2001 , 2, 835-41	19.1	809
98	Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. <i>Immunity</i> , 2006 , 24, 93-103	32.3	777
97	Transcriptional control of the inflammatory response. <i>Nature Reviews Immunology</i> , 2009 , 9, 692-703	36.5	749
96	A mechanism for the initiation of allergen-induced T helper type 2 responses. <i>Nature Immunology</i> , 2008 , 9, 310-8	19.1	719
95	The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. <i>Nature</i> , 2002 , 420, 329-33	50.4	684
94	Toll-like receptors and cancer. <i>Nature Reviews Cancer</i> , 2009 , 9, 57-63	31.3	664
93	Toll-dependent selection of microbial antigens for presentation by dendritic cells. <i>Nature</i> , 2006 , 440, 808-12	50.4	643
92	Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. <i>Nature</i> , 2000 , 408, 111-5	50.4	613
91	Homeostasis, inflammation, and disease susceptibility. <i>Cell</i> , 2015 , 160, 816-827	56.2	596

90	Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. <i>Science</i> , 2017 , 356, 513-519	33.3	574
89	Tissue-specific signals control reversible program of localization and functional polarization of macrophages. <i>Cell</i> , 2014 , 157, 832-44	56.2	572
88	Pattern recognition receptors and control of adaptive immunity. <i>Immunological Reviews</i> , 2009 , 227, 227	1 -33 3	519
87	Control of inducible gene expression by signal-dependent transcriptional elongation. <i>Cell</i> , 2009 , 138, 129-45	56.2	518
86	Recognition of microbial infection by Toll-like receptors. Current Opinion in Immunology, 2003, 15, 396-4	1 9 18	466
85	Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. <i>Journal of Immunology</i> , 2002 , 168, 5997-6001	5.3	393
84	Stress, inflammation, and defense of homeostasis. <i>Molecular Cell</i> , 2014 , 54, 281-8	17.6	381
83	Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. <i>Nature Medicine</i> , 2002 , 8, 878-84	50.5	356
82	Tissue biology perspective on macrophages. <i>Nature Immunology</i> , 2016 , 17, 9-17	19.1	351
81	Toll-dependent control mechanisms of CD4 T cell activation. <i>Immunity</i> , 2004 , 21, 733-41	32.3	317
80	Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. <i>Immunity</i> , 2013 , 39, 722-32	32.3	307
79	Control of adaptive immune responses by Toll-like receptors. <i>Current Opinion in Immunology</i> , 2002 , 14, 380-3	7.8	287
78	Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. <i>Cell</i> , 2016 , 166, 1512-1525.e12	56.2	286
77	Allergic host defences. <i>Nature</i> , 2012 , 484, 465-72	50.4	270
76	Harnessing innate immunity in cancer therapy. <i>Nature</i> , 2019 , 574, 45-56	50.4	254
75	Approaching the asymptote: 20 years later. <i>Immunity</i> , 2009 , 30, 766-75	32.3	246
74	Evolution of inflammatory diseases. <i>Current Biology</i> , 2012 , 22, R733-40	6.3	214
73	Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. <i>Current Biology</i> , 2000 , 10, 1139-42	6.3	204

(2007-2010)

72	A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. <i>Cell Host and Microbe</i> , 2010 , 7, 376-87	23.4	201
71	Role of tissue protection in lethal respiratory viral-bacterial coinfection. <i>Science</i> , 2013 , 340, 1230-4	33.3	191
70	The control of adaptive immune responses by the innate immune system. <i>Advances in Immunology</i> , 2011 , 109, 87-124	5.6	180
69	Toll-like receptors and acquired immunity. Seminars in Immunology, 2004, 16, 23-6	10.7	161
68	GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. <i>Cell</i> , 2019 , 178, 1231-1244.e1	1 56.2	160
67	An evolutionary perspective on immunometabolism. <i>Science</i> , 2019 , 363,	33.3	160
66	Gene-specific control of the TLR-induced inflammatory response. Clinical Immunology, 2009, 130, 7-15	9	159
65	Circuit Design Features of a Stable Two-Cell System. <i>Cell</i> , 2018 , 172, 744-757.e17	56.2	143
64	Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. <i>Immunity</i> , 2013 , 39, 976-85	32.3	141
63	Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. <i>Nature Medicine</i> , 2017 , 23, 997-1003	50.5	140
62	Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. <i>Nature Communications</i> , 2015 , 6, 6931	17.4	122
61	Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. <i>Cell Host and Microbe</i> , 2010 , 7, 103-14	23.4	120
60	Toll-like receptors: balancing host resistance with immune tolerance. <i>Current Opinion in Immunology</i> , 2003 , 15, 677-82	7.8	113
59	MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice. <i>Nature Communications</i> , 2012 , 3, 1120	17.4	105
58	T cell-intrinsic role of IL-6 signaling in primary and memory responses. <i>ELife</i> , 2014 , 3, e01949	8.9	93
57	Signaling through the adaptor molecule MyD88 in CD4+ T cells is required to overcome suppression by regulatory T cells. <i>Immunity</i> , 2014 , 40, 78-90	32.3	77
56	Highlights of 10 years of immunology in Nature Reviews Immunology. <i>Nature Reviews Immunology</i> , 2011 , 11, 693-702	36.5	75
55	TLR-mediated innate immune recognition. <i>Seminars in Immunology</i> , 2007 , 19, 1-2	10.7	70

54	The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. <i>Cell</i> , 2016 , 165, 343-56	56.2	68
53	Evolutionary perspective on innate immune recognition. <i>Journal of Cell Biology</i> , 2001 , 155, 705-10	7.3	66
52	Analysis of gene-environment interactions in postnatal development of the mammalian intestine. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1929-36	11.5	63
51	Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1686-91	11.5	63
50	Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. <i>Cell Metabolism</i> , 2016 , 24, 379-387	24.6	62
49	Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. <i>PLoS Pathogens</i> , 2008 , 4, e1000067	7.6	62
48	Role of caspase-1 in regulation of triglyceride metabolism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4810-5	11.5	56
47	Innate immunity: quo vadis?. <i>Nature Immunology</i> , 2010 , 11, 551-3	19.1	53
46	Emerging Principles of Gene Expression Programs and Their Regulation. <i>Molecular Cell</i> , 2018 , 71, 389-3	9 7 7.6	43
45	A role for the ITAM signaling module in specifying cytokine-receptor functions. <i>Nature Immunology</i> , 2014 , 15, 333-42	19.1	39
44	Pattern recognition theory and the launch of modern innate immunity. <i>Journal of Immunology</i> , 2013 , 191, 4473-4	5.3	39
43	Investigate the origins of COVID-19. <i>Science</i> , 2021 , 372, 694	33.3	39
42	Two-signal requirement for growth-promoting function of Yap in hepatocytes. ELife, 2015, 4,	8.9	38
41	Glucose metabolism mediates disease tolerance in cerebral malaria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11042-11047	11.5	36
40	Damage control in host-pathogen interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15525-6	11.5	35
39	Role of ITAM signaling module in signal integration. Current Opinion in Immunology, 2012, 24, 58-66	7.8	34
38	Long-Term Programming of CD8IT Cell Immunity by Perinatal Exposure to Glucocorticoids. <i>Cell</i> , 2020 , 180, 847-861.e15	56.2	32
37	Principles of Cell Circuits for Tissue Repair and Fibrosis. <i>IScience</i> , 2020 , 23, 100841	6.1	30

36	Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2200-2209	11.5	26	
35	The origins of tumor-promoting inflammation. Cancer Cell, 2013, 24, 143-4	24.3	26	
34	Signaling pathways activated by a protease allergen in basophils. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E4963-71	11.5	26	
33	T cells regulate the intestinal response to nutrient sensing. <i>Science</i> , 2021 , 371,	33.3	26	
32	Tissue Homeostasis and Inflammation. Annual Review of Immunology, 2021, 39, 557-581	34.7	26	
31	Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin. <i>Journal of Immunology</i> , 2015 , 194, 4621-30	5.3	25	
30	Functional categories of immune inhibitory receptors. <i>Nature Reviews Immunology</i> , 2020 , 20, 771-780	36.5	24	
29	Endocytosis as a stabilizing mechanism for tissue homeostasis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E1926-E1935	11.5	24	
28	Septic shock: on the importance of being tolerant. <i>Immunity</i> , 2013 , 39, 799-800	32.3	19	
27	HIV immunology needs a new direction. <i>Nature</i> , 2008 , 455, 591	50.4	19	
26	Infection and inflammation in somatic maintenance, growth and longevity. <i>Evolutionary Applications</i> , 2009 , 2, 132-41	4.8	18	
25	Food allergy as a biological food quality control system. <i>Cell</i> , 2021 , 184, 1440-1454	56.2	18	
24	Desynchronization of the molecular clock contributes to the heterogeneity of the inflammatory response. <i>Science Signaling</i> , 2019 , 12,	8.8	17	
23	Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis. <i>Aging</i> , 2017 , 9, 627-649	5.6	15	
22	Counting Calories: The Cost of Inflammation. <i>Cell</i> , 2019 , 177, 223-224	56.2	14	
21	Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 15837-15845	11.5	14	
20	Adiponectin and related C1q/TNF-related proteins bind selectively to anionic phospholipids and sphingolipids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 17381-17388	11.5	14	
19	Longitudinal immunological analyses reveal inflammatory misfiring in severe COVID-19 patients		14	

18	Reply to II oll-like receptors and phagosome maturation [INature Immunology, 2007, 8, 217-218	19.1	13
17	Control strategies in systemic metabolism. <i>Nature Metabolism</i> , 2019 , 1, 947-957	14.6	12
16	The spectrum of inflammatory responses. <i>Science</i> , 2021 , 374, 1070-1075	33.3	10
15	Wormhole Travel for Macrophages. <i>Cell</i> , 2016 , 165, 518-9	56.2	9
14	Bringing Warburg to lymphocytes. <i>Nature Reviews Immunology</i> , 2015 , 15, 598	36.5	6
13	How the immune system spots tumors. <i>ELife</i> , 2014 , 3, e04476	8.9	6
12	Tissue remodeling by an opportunistic pathogen triggers allergic inflammation Immunity, 2022,	32.3	4
11	Control of infection by pyroptosis and autophagy: role of TLR and NLR 2010 , 67, 1643		3
10	RUNX Binding Sites Are Enriched in Herpesvirus Genomes, and RUNX1 Overexpression Leads to Herpes Simplex Virus 1 Suppression. <i>Journal of Virology</i> , 2020 , 94,	6.6	3
9	Hepatic FGF21 preserves thermoregulation and cardiovascular function during bacterial inflammation. <i>Journal of Experimental Medicine</i> , 2021 , 218,	16.6	3
8	Not the usual suspect: type I interferon-responsive T cells drive infection-induced cachexia. <i>Nature Immunology</i> , 2019 , 20, 666-667	19.1	2
7	Fly immunity: great expectations. <i>Genome Biology</i> , 2000 , 1, REVIEWS106	18.3	2
6	Principles of Cell Circuits for Tissue Repair and Fibrosis		2
5	GENE EXPRESSION. Unwinding inducible gene expression. <i>Science</i> , 2016 , 352, 1058-9	33.3	2
4	Honor thy Go(na)ds. Immunology and Cell Biology, 2013, 91, 597-8	5	1
3	Toll-Like Receptors and Control of Adaptive Immunity271-285		1
2	Role of toll-like receptorflommensal interactions in intestinal inflammation. <i>International Congress Series</i> , 2005 , 1285, 3-9		
1	Untangling iNKT Cell Function in Adipose Tissue Homeostasis. <i>Cell Metabolism</i> , 2020 , 32, 148-149	24.6	