Changjiang Dong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5755652/changjiang-dong-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25	1,449	17	25
papers	citations	h-index	g-index
25	1,787 ext. citations	14.4	4.36
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
25	Structural basis for bacterial lipoprotein relocation by the transporter LolCDE. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 347-355	17.6	12
24	Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 81-91	17.6	17
23	Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. <i>EMBO Molecular Medicine</i> , 2020 , 12, e11571	12	13
22	Commentary: Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. <i>Frontiers in Immunology</i> , 2020 , 11, 1925	8.4	3
21	Cryo-EM structures of lipopolysaccharide transporter LptBFGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. <i>Nature Communications</i> , 2019 , 10, 4175	17.4	26
20	ILC3 function as a double-edged sword in inflammatory bowel diseases. <i>Cell Death and Disease</i> , 2019 , 10, 315	9.8	79
19	Expression and X-Ray Structural Determination of the Nucleoprotein of Lassa Fever Virus. <i>Methods in Molecular Biology</i> , 2018 , 1604, 179-188	1.4	
18	Crystal structure of the outer membrane protein OmpU from Vibrio cholerae at 2.2 Iresolution. <i>Acta Crystallographica Section D: Structural Biology</i> , 2018 , 74, 21-29	5.5	12
17	BamA 🛮 6C strand and periplasmic turns are critical for outer membrane protein insertion and assembly. <i>Biochemical Journal</i> , 2017 , 474, 3951-3961	3.8	10
16	Structural insight into lipopolysaccharide transport from the Gram-negative bacterial inner membrane to the outer membrane. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2017 , 1862, 1461-1467	5	27
15	Structural and functional insights into the lipopolysaccharide ABC transporter LptBFG. <i>Nature Communications</i> , 2017 , 8, 222	17.4	46
14	Structural basis of outer membrane protein insertion by the BAM complex. <i>Nature</i> , 2016 , 531, 64-9	50.4	182
13	Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria. <i>Scientific Reports</i> , 2016 , 6, 30815	4.9	27
12	Lipopolysaccharide is inserted into the outer membrane through an intramembrane hole, a lumen gate, and the lateral opening of LptD. <i>Structure</i> , 2015 , 23, 496-504	5.2	53
11	Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. <i>Scientific Reports</i> , 2015 , 5, 11883	4.9	32
10	In vitro and in vivo characterizations of pichinde viral nucleoprotein exoribonuclease functions. <i>Journal of Virology</i> , 2015 , 89, 6595-607	6.6	30
9	Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 452, 443-9	3.4	15

LIST OF PUBLICATIONS

8	Structural basis for outer membrane lipopolysaccharide insertion. <i>Nature</i> , 2014 , 511, 52-6	50.4	181	
7	High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions. <i>PLoS ONE</i> , 2014 , 9, e87577	3.7	26	
6	Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism. <i>Rna</i> , 2013 , 19, 1129-36	5.8	31	
5	Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression. <i>Journal of Biological Chemistry</i> , 2013 , 288, 16949-16959	5.4	60	
4	Cap binding and immune evasion revealed by Lassa nucleoprotein structure. <i>Nature</i> , 2010 , 468, 779-83	50.4	192	
3	Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. <i>Journal of Biological Chemistry</i> , 2010 , 285, 33529	-3 ⁵ 3 ⁴ 539	99	
2	Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. <i>Nature</i> , 2006 , 444, 226-9	50.4	273	
1	Structural insight into outer membrane asymmetry maintenance of Gram-negative bacteria by the phospholipid transporter MlaFEDB		3	