Antoninho Valentini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5755185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of tin on the electronic properties of Ni/Al2O3 catalyst and its effect over the methane dry reforming reaction. Applied Catalysis A: General, 2021, 618, 118129.	4.3	16
2	Vibrational spectroscopy and phononâ€related properties of monoclinic GABA, a nonâ€proteinogenic inhibitory neurotransmitter amino acid. Journal of Raman Spectroscopy, 2021, 52, 1294-1307.	2.5	1
3	Vanadium effect over γ-Al2O3-supported Ni catalysts for valorization of glycerol. Fuel Processing Technology, 2021, 216, 106773.	7.2	8
4	CO2 role on the glycerol conversion over catalyst containing CaO-SiO2 doped with Ag and Pt. Catalysis Today, 2020, 344, 199-211.	4.4	8
5	Application of Al2O3/AlNbO4 in the oxidation of aniline to azoxybenzene. Chemical Papers, 2020, 74, 543-553.	2.2	6
6	Nitrate photocatalytic reduction on TiO2: Metal loaded, synthesis and anions effect. Journal of Environmental Chemical Engineering, 2020, 8, 103844.	6.7	22
7	Photocatalysis and Photodegradation of Pollutants. , 2019, , 449-488.		6
8	Oxidative dehydrogenation of ethylbenzene to styrene over the CoFe2O4–MCM-41 catalyst: preferential adsorption on the O2â^'Fe3+O2â^' sites located at octahedral positions. Catalysis Science and Technology, 2019, 9, 2469-2484.	4.1	25
9	EVALUATION OF THE PHOTOCATALYTIC ACTIVITY OF SiO2@TiO2 HYBRID SPHERES IN THE DEGRADATION OF METHYLENE BLUE AND HYDROXYLATION OF BENZENE: KINETIC AND MECHANISTIC STUDY. Brazilian Journal of Chemical Engineering, 2019, 36, 1501-1518.	1.3	22
10	Biogas reforming over Ni catalysts dispersed in different mixed oxides containing Zn2+, Al3+ and Zr4+cations. Materials Research Bulletin, 2018, 102, 186-195.	5.2	10
11	Flexible cellulose-carbon nanotube paper substrate decorated with PZT: sensor properties. MRS Advances, 2018, 3, 31-36.	0.9	3
12	Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties. Polymer Bulletin, 2018, 75, 1619-1633.	3.3	26
13	Copper promoter effect on acid–base and redox sites of Fe/Al ₂ O ₃ catalysts and their role in ethanol–acetone mixture conversion. Catalysis Science and Technology, 2018, 8, 443-458.	4.1	6
14	Ultrafast sonochemistry-based approach to coat TiO2 commercial particles for sunscreen formulation. Ultrasonics Sonochemistry, 2018, 48, 340-348.	8.2	38
15	Correlation between the basicity of Cu–MxOy–Al2O3 (MÂ=ÂBa, Mg, K or La) oxide and the catalytic performance in the glycerol conversion from adsorption microcalorimetry characterization. Journal of Thermal Analysis and Calorimetry, 2017, 129, 65-74.	3.6	7
16	Changing the gap type of solid state boric acid by heating: a dispersion-corrected density functional study of l±-, l²-, and l³-metaboric acid polymorphs. New Journal of Chemistry, 2017, 41, 15533-15544.	2.8	4
17	From banana stem to conductive paper: A capacitive electrode and gas sensor. Sensors and Actuators B: Chemical, 2017, 240, 459-467.	7.8	25
18	Gas-Phase Conversion of Glycerol to Acetol: Influence of Support Acidity on the Catalytic Stability and Copper Surface Properties on the Activity. Journal of the Brazilian Chemical Society, 2016, , .	0.6	4

#	Article	IF	CITATIONS
19	NON-CRYSTALLINE COPPER OXIDE HIGHLY DISPERSED ON MESOPOROUS ALUMINA: SYNTHESIS, CHARACTERIZATION AND CATALYTIC ACTIVITY IN GLYCEROL CONVERSION TO ACETOL. Quimica Nova, 2016, , .	0.3	2
20	Role of Cu, Ni and Co metals in the acidic and redox properties of Mo catalysts supported on Al ₂ O ₃ spheres for glycerol conversion. Catalysis Science and Technology, 2016, 6, 4986-5002.	4.1	33
21	Structural, Electronic, and Optical Properties of Bulk Boric Acid <i>2A</i> and <i>3T</i> Polymorphs: Experiment and Density Functional Theory Calculations. Crystal Growth and Design, 2016, 16, 6631-6640.	3.0	13
22	N-octane catalytic isomerization with aluminium and aluminiumlanthanum pillared nontronite. Ceramica, 2015, 61, 420-427.	0.8	3
23	Cu, Fe, or Ni doped molybdenum oxide supported on Al2O3 for the oxidative dehydrogenation of ethylbenzene. Chinese Journal of Catalysis, 2015, 36, 712-720.	14.0	12
24	Simple synthesis of Al2O3 sphere composite from hybrid process with improved thermal stability for catalytic applications. Materials Chemistry and Physics, 2015, 160, 119-130.	4.0	22
25	Synthesis of Cu–M _x O _y /Al ₂ O ₃ (M = Fe, Zn, W or Sb) catalysts for the conversion of glycerol to acetol: effect of texture and acidity of the supports. RSC Advances, 2015, 5, 93394-93402.	3.6	12
26	Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles. Nanoscale, 2015, 7, 17441-17449.	5.6	14
27	Synthesis and Photocatalytic Performance of Macroporous Spheres of Silica Coated with Titanium Dioxide. Revista Virtual De Quimica, 2015, 7, 2291-2310.	0.4	1
28	EFFECT OF CARBON DIOXIDE ON THE STABILITY OF THE Ca2Fe2O5PHASE APPLIED IN THE PHOTOCATALYTIC DEGRADATION PROCESS OF METHYLENE BLUE. Quimica Nova, 2015, , .	0.3	0
29	Optimization Study in Biodiesel Production via Response Surface Methodology Using Dolomite as a Heterogeneous Catalyst. Journal of Catalysts, 2014, 2014, 1-11.	0.5	16
30	Synthesis of copper on iron/aluminum oxide mesoporous spheres and application on denitrification reaction. Chemical Engineering Journal, 2014, 255, 290-296.	12.7	8
31	CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology. Chinese Journal of Catalysis, 2014, 35, 514-523.	14.0	26
32	Monitoring the conversion of soybean oil to methyl or ethyl esters using the refractive index with correlation gas chromatography. Microchemical Journal, 2013, 109, 46-50.	4.5	30
33	Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide. Chemical Engineering Journal, 2012, 210, 143-149.	12.7	79
34	Catalytic properties of cobalt and nickel ferrites dispersed in mesoporous silicon oxide for ethylbenzene dehydrogenation with CO2. Catalysis Science and Technology, 2011, 1, 1383.	4.1	36
35	Nanocasted oxides for oxidative dehydrogenation of ethylbenzene utilizing CO2 as soft oxidant. Journal of Molecular Catalysis A, 2011, 348, 1-13.	4.8	22
36	Modifications of an HY zeolite for n-octane hydroconversion. Applied Catalysis A: General, 2011, 403, 65-74.	4.3	11

#	Article	IF	CITATIONS
37	Synthesis and characterization of iron oxide nanoparticles dispersed in mesoporous aluminum oxide or silicon oxide. Journal of Materials Science, 2011, 46, 766-773.	3.7	10
38	Mesoporous MAl2O4 (M = Cu, Ni, Fe or Mg) spinels: Characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2. Applied Catalysis A: General, 2010, 382, 148-157.	4.3	74
39	Ethylbenzene to chemicals: Catalytic conversion of ethylbenzene into styrene over metal-containing MCM-41. Journal of Molecular Catalysis A, 2010, 315, 86-98.	4.8	53
40	Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides. Journal of Magnetism and Magnetic Materials, 2010, 322, 633-637.	2.3	11
41	Synthesis of hybrid spheres for the dehydrogenation of ethylbenzene in the presence of CO2. Applied Catalysis A: General, 2009, 362, 139-146.	4.3	20
42	Dehydrogenation of ethylbenzene in the presence of CO2 using a catalyst synthesized by polymeric precursor method. Applied Catalysis A: General, 2009, 366, 193-200.	4.3	16
43	Highly stable dealuminated zeolite support for the production of hydrogen by dry reforming of methane. Applied Catalysis A: General, 2009, 355, 156-168.	4.3	94
44	Synthesis of hybrid mesoporous spheres using the chitosan as template. Journal of Non-Crystalline Solids, 2009, 355, 860-866.	3.1	45
45	Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane. Catalysis Communications, 2009, 11, 11-14.	3.3	59
46	Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide. Nanoscale Research Letters, 2008, 3, .	5.7	30
47	Catalytic activity of nanometric pure and rare earth-doped SnO2 samples. Materials Letters, 2008, 62, 1677-1680.	2.6	31
48	Structural characterization of highly stable Ptâ^'Ni supported zeolites and its catalytic performance for methane reforming with CO2. Studies in Surface Science and Catalysis, 2008, 174, 205-208.	1.5	10
49	Effect of Ni loading and reaction temperature on the formation of carbon nanotubes from methane catalytic decomposition over Ni/SiO2. Journal of Materials Science, 2007, 42, 914-922.	3.7	21
50	Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts. Catalysis Letters, 2007, 119, 228-236.	2.6	44
51	Ni:CeO2 nanocomposite catalysts prepared by polymeric precursor method. Applied Catalysis A: General, 2006, 310, 174-182.	4.3	34
52	Synthesis of mesoporous Al2O3 macrospheres using the biopolymer chitosan as a template: A novel active catalyst system for CO2 reforming of methane. Materials Letters, 2005, 59, 3963-3967.	2.6	61
53	Gas-phase selective conjugate addition of methanol to acetone for methyl vinyl ketone over SnO2 nanoparticle catalysts. Journal of the Brazilian Chemical Society, 2005, 16, 607-613.	0.6	4
54	Fotoluminescência e adsorção de CO2 em nanopartÃculas de CaTiO3 dopadas com lantânio. Quimica Nova, 2004, 27, 862-865.	0.3	10

ANTONINHO VALENTINI

#	Article	IF	CITATIONS
55	Processing effects of nanometric rare earth-doped tin oxides on the synthesis of methyl vinyl ketone. Reaction Kinetics and Catalysis Letters, 2004, 81, 211-217.	0.6	3
56	Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems. Sensors and Actuators B: Chemical, 2004, 97, 31-38.	7.8	60
57	Selective synthesis of vinyl ketone over SnO2 nanoparticle catalysts doped with rare earths. Journal of Molecular Catalysis A, 2004, 207, 91-96.	4.8	52
58	Synthesis of Ni nanoparticles in microporous and mesoporous Al and Mg oxides. Microporous and Mesoporous Materials, 2004, 68, 151-157.	4.4	27
59	Application of silica gel organofunctionalized with 3(1-imidazolyl)propyl in an on-line preconcentration system for the determination of copper by FAAS. Talanta, 2004, 64, 181-189.	5.5	53
60	Role of vanadium in Ni:Al2O3 catalysts for carbon dioxide reforming of methane. Applied Catalysis A: General, 2003, 255, 211-220.	4.3	56
61	Non-toxic Fe-based catalysts for styrene synthesis. Catalysis Today, 2003, 85, 49-57.	4.4	42
62	Synthesis of Metal-Oxide Matrix with Embedded Nickel Nanoparticles by a Bottom-up Chemical Process. Journal of Nanoscience and Nanotechnology, 2003, 3, 516-520.	0.9	2
63	Estudo microestrutural do catalisador Ni/gama-Al2O3: efeito da adição de CeO2 na reforma do metano com dióxido de carbono. Quimica Nova, 2003, 26, 648-654.	0.3	7
64	Natureza do coque formado sobre a mordenita durante a transalquilação de benzeno. Quimica Nova, 2003, 26, 305-308.	0.3	0
65	Evaluation of hair fiber hydration by differential scanning calorimetry, gas chromatography, and sensory analysis. Journal of Cosmetic Science, 2003, 54, 527-35.	0.1	10
66	Synthesis of Mesoporous Silica with Embedded Nickel Nanoparticles for Catalyst Applications. Journal of Nanoscience and Nanotechnology, 2002, 2, 89-94.	0.9	30
67	NanopartÃculas catalisadoras suportadas por materiais cerâmicos. Ceramica, 2002, 48, 163-171.	0.8	2
68	SÃntese, caracterização e estudo das propriedades catalÃŧicas e magnéticas de nanopartÃculas de Ni dispersas em matriz mesoporosa de SiO2. Quimica Nova, 2002, 25, 935-942.	0.3	14
69	The influence of cation segregation on the methanol decomposition on nanostructured SnO2. Sensors and Actuators B: Chemical, 2002, 86, 185-192.	7.8	43
70	Influence of the starting materials on the catalytic properties of iron oxides. Reaction Kinetics and Catalysis Letters, 2002, 75, 135-140.	0.6	4
71	Application of Ni:SiO ₂ Nanocomposite to Control the Carbon Deposition on the Carbon Dioxide Reforming of Methane. Journal of Nanoscience and Nanotechnology, 2002, 2, 491-494.	0.9	2
72	Processo alternativo para remoção de cobre (II) e nÃquel (II) de soluções aquosas utilizando cápsulas de quitosana - ÃIcool PolivinÃIico. Quimica Nova, 2000, 23, 12.	0.3	7

#	Article	IF	CITATIONS
73	Furfural Hydrodeoxygenation over a Ruthenium-Based Bifunctional Catalyst in the Presence of a Direct Source of H2. Journal of the Brazilian Chemical Society, 0, , .	0.6	0