Ke-Ke Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5755181/publications.pdf

Version: 2024-02-01

96 papers

3,297 citations

32 h-index 53 g-index

96 all docs 96 docs citations

96 times ranked 3084 citing authors

#	Article	IF	CITATIONS
1	POLY(p-DIOXANONE) AND ITS COPOLYMERS. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2002, 42, 373-398.	2.2	194
2	A novel biodegradable multiblock poly(ester urethane) containing poly(l-lactic acid) and poly(butylene succinate) blocks. Polymer, 2009, 50, 1178-1186.	3.8	166
3	Properties of Starch Blends with Biodegradable Polymers. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2003, 43, 385-409.	2.2	165
4	Design of Poly(<scp>l</scp> -lactide)–Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups. ACS Applied Materials & Interfaces, 2016, 8, 9431-9439.	8.0	109
5	A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe ₃ O ₄ Nanoparticles. Macromolecules, 2018, 51, 705-715.	4.8	109
6	Modified Corn Starches with Improved Comprehensive Properties for Preparing Thermoplastics. Starch/Staerke, 2007, 59, 258-268.	2.1	92
7	Reconfigurable LC Elastomers: Using a Thermally Programmable Monodomain To Access Two-Way Free-Standing Multiple Shape Memory Polymers. Macromolecules, 2018, 51, 5812-5819.	4.8	92
8	Photo-cross-linking: A powerful and versatile strategy to develop shape-memory polymers. Progress in Polymer Science, 2019, 95, 32-64.	24.7	91
9	Structure and Properties of Soy Protein/Poly(butylene succinate) Blends with Improved Compatibility. Biomacromolecules, 2008, 9, 3157-3164.	5.4	89
10	A robust self-healing polyurethane elastomer: From H-bonds and stacking interactions to well-defined microphase morphology. Science China Materials, 2019, 62, 1188-1198.	6.3	83
11	Kinetics of thermal degradation of flame retardant copolyesters containing phosphorus linked pendent groups. Polymer Degradation and Stability, 2003, 80, 135-140.	5.8	81
12	Adaptable Strategy to Fabricate Self-Healable and Reprocessable Poly(thiourethane-urethane) Elastomers via Reversible Thiol–Isocyanate Click Chemistry. Macromolecules, 2020, 53, 4284-4293.	4.8	80
13	Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). European Polymer Journal, 2003, 39, 1567-1574.	5.4	79
14	4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chemical Engineering Journal, 2020, 396, 125242.	12.7	79
15	Kinetics of thermal oxidative degradation of phosphorus-containing flame retardant copolyesters. Polymer Degradation and Stability, 2002, 76, 401-409.	5.8	68
16	A new biodegradable copolyester poly(butylene succinate-co-ethylene succinate-co-ethylene) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 142
17	Polyurethane networks based on disulfide bonds: from tunable multi-shape memory effects to simultaneous self-healing. Science China Materials, 2019, 62, 437-447.	6.3	60
18	Effect of PEG on the crystallization of PPDO/PEG blends. European Polymer Journal, 2005, 41, 1243-1250.	5.4	58

#	Article	IF	CITATIONS
19	Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance. Polymer Chemistry, 2012, 3, 800.	3.9	58
20	Synthesis and Properties of Poly(Ester Urethane)s Consisting of Poly(I-Lactic Acid) and Poly(Ethylene) Tj ETQq	0 0 0 ggBT /0	Overlock 10 T
21	A Facile Strategy To Construct PDLLA-PTMEG Network with Triple-Shape Effect via Photo-Cross-Linking of Anthracene Groups. Macromolecules, 2016, 49, 3845-3855.	4.8	51
22	Fabrication of Liquid Crystalline Polyurethane Networks with a Pendant Azobenzene Group to Access Thermal/Photoresponsive Shape-Memory Effects. ACS Applied Materials & Diterfaces, 2017, 9, 24947-24954.	8.0	45
23	Preparation of a new dialdehyde starch derivative and investigation of its thermoplastic properties. Journal of Polymer Research, 2010, 17, 439-446.	2.4	44
24	Reinforcement of shape-memory poly(ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition. Composites Science and Technology, 2018, 157, 202-208.	7.8	44
25	Crystallization and morphology of a novel biodegradable polymer system: poly(1,4-dioxan-2-one)/starch blends. Acta Materialia, 2004, 52, 4899-4905.	7.9	42
26	A novel biodegradable poly(p-dioxanone)-grafted poly(vinyl alcohol) copolymer with a controllable in vitro degradation. Polymer, 2006, 47, 32-36.	3.8	42
27	Physical and chemical effects of diethylN,N?-diethanolaminomethylphosphate on flame retardancy of rigid polyurethane foam. Journal of Applied Polymer Science, 2001, 82, 276-282.	2.6	39
28	Biodegradable polylactide based materials with improved crystallinity, mechanical properties and rheological behaviour by introducing a long-chain branched copolymer. RSC Advances, 2015, 5, 42162-42173.	3.6	38
29	A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal–ligand interactions and hydrogen bonding. Polymer Chemistry, 2016, 7, 7269-7277.	3.9	37
30	Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system. Journal of Reinforced Plastics and Composites, 2014, 33, 2106-2114.	3.1	35
31	Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints. Macromolecules, 2017, 50, 5155-5164.	4.8	34
32	Agricultural Application and Environmental Degradation of Photo-Biodegradable Polyethylene Mulching Films. Journal of Polymers and the Environment, 2004, 12, 7-10.	5.0	33
33	Rheology, Crystallization, and Biodegradability of Blends Based on Soy Protein and Chemically Modified Poly(butylene succinate). Industrial & Engineering Chemistry Research, 2009, 48, 4817-4825.	3.7	33
34	A facile method to produce PBS-PEG/CNTs nanocomposites with controllable electro-induced shape memory effect. Polymer Chemistry, 2013, 4, 3987.	3.9	31
35	Effects of molecular weights of poly(p-dioxanone) on its thermal, rheological and mechanical properties and in vitro degradability. Materials Chemistry and Physics, 2004, 87, 218-221.	4.0	29
36	Preparation and characterization of a novel biodegradable poly(p-dioxanone)/montmorillonite nanocomposite. Journal of Polymer Science Part A, 2005, 43, 2298-2303.	2.3	29

#	Article	IF	CITATIONS
37	Thermal properties and non-isothermal crystallization behavior of biodegradable poly(p-dioxanone)/poly(vinyl alcohol) blends. Polymer International, 2006, 55, 383-390.	3.1	29
38	From a body temperature-triggered reversible shape-memory material to high-sensitive bionic soft actuators. Applied Materials Today, 2020, 18, 100463.	4.3	29
39	Thermogravimetric analysis of the decomposition of poly(1,4-dioxan-2-one)/starch blends. Polymer Degradation and Stability, 2003, 81, 415-421.	5.8	27
40	A study on grafting poly(1,4-dioxan-2-one) onto starch via 2,4-tolylene diisocyanate. Carbohydrate Polymers, 2006, 65, 28-34.	10.2	27
41	Shape-memory poly(p-dioxanone)–poly(É>-caprolactone)/sepiolite nanocomposites with enhanced recovery stress. Chinese Chemical Letters, 2015, 26, 1221-1224.	9.0	26
42	A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 54
43	Synthesis of poly(lactic acid-b-p-dioxanone) block copolymers from ring opening polymerization of p-dioxanone by poly(L-lactic acid) macroinitiators. Polymer Bulletin, 2008, 61, 139-146.	3.3	25
44	In vitro degradation of biodegradable blending materials based on poly(p-dioxanone) and poly(vinyl) Tj ETQq0 0 0 Research - Part A, 2007, 80A, 453-465.		rlock 10 Tf 5 24
45	Fractional Crystallization and Homogeneous Nucleation of Confined PEG Microdomains in PBS-PEG Multiblock Copolymers. Journal of Physical Chemistry B, 2013, 117, 10665-10676.	2.6	24
46	Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium. Journal of Materials Chemistry C, 2018, 6, 10422-10427.	5.5	24
47	Poly(ethylene-co-vinyl acetate)/graphene shape-memory actuator with a cyclic thermal/light dual-sensitive capacity. Composites Science and Technology, 2019, 173, 41-46.	7.8	23
48	Dynamic Origin and Thermally Induced Evolution of New Selfâ€Assembled Aggregates from an Amphiphilic Combâ€Like Graft Copolymer: A Multiscale and Multimorphological Procedure. Chemistry - A European Journal, 2012, 18, 12237-12241.	3.3	22
49	Preparation of Poly(<i>p</i> -dioxanone)/Sepiolite Nanocomposites with Excellent Strength/Toughness Balance via Surface-Initiated Polymerization. Industrial & Engineering Chemistry Research, 2011, 50, 10006-10016.	3.7	21
50	Facile fabrication of ternary nanocomposites with selective dispersion of multi-walled carbon nanotubes to access multi-stimuli-responsive shape-memory effects. Materials Chemistry Frontiers, 2017, 1, 343-353.	5.9	21
51	A rapid synthesis of poly (p-dioxanone) by ring-opening polymerization under microwave irradiation. Polymer Bulletin, 2006, 57, 873-880.	3.3	20
52	A new approach to prepare high molecular weight poly(p-dioxanone) by chain-extending from dihydroxyl terminated propolymers. European Polymer Journal, 2008, 44, 465-474.	5.4	20
53	Crystallization behavior and morphology of double crystalline poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 1	.02 Td (succ
54	Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Science China Materials, 2020, 63, 2590-2598.	6.3	20

#	Article	IF	Citations
55	Strategy for Constructing Shape-Memory Dynamic Networks through Charge-Transfer Interactions. ACS Macro Letters, 2018, 7, 705-710.	4.8	19
56	Effects of molecular weights of bioabsorbable poly(p-dioxanone) on its crystallization behaviors. Journal of Applied Polymer Science, 2006, 100, 2331-2335.	2.6	18
57	New Strategy to Access Dualâ€Stimuliâ€Responsive Tripleâ€Shapeâ€Memory Effect in a Nonâ€overlapping Patter Macromolecular Rapid Communications, 2017, 38, 1600664.	n. 3.9	18
58	Crystallization and morphology of starch-g-poly(1,4-dioxan-2-one) copolymers. Polymer, 2004, 45, 7961-7968.	3.8	17
59	Synthesis and nuclear magnetic resonance analysis of starch-g-poly(1,4-dioxan-2-one) copolymers. Journal of Polymer Science Part A, 2004, 42, 3417-3422.	2.3	17
60	Synthesis, characterization, and thermal properties of a novel pentaerythritol-initiated star-shaped poly(p-dioxanone). Journal of Polymer Science Part A, 2006, 44, 1245-1251.	2.3	16
61	ABA triblock copolymers from poly(p-dioxanone) and poly(ethylene glycol). Journal of Applied Polymer Science, 2006, 102, 1092-1097.	2.6	16
62	From shape and color memory PCL network to access high security anti-counterfeit material. Polymer, 2019, 172, 52-57.	3.8	16
63	Effect of Self-Nucleation and Stress-Induced Crystallization on the Tunable Two-Way Shape-Memory Effect of a Semicrystalline Network. Macromolecules, 2022, 55, 5104-5114.	4.8	16
64	Copolymerization of poly(vinyl alcohol)-graft-poly(1,4-dioxan-2-one) with designed molecular structure by a solid-state polymerization method. Journal of Polymer Science Part A, 2006, 44, 3083-3091.	2.3	15
65	Ringâ€opening polymerization of 1,4â€dioxanâ€2â€one initiated by lanthanum isopropoxide in bulk. Journal of Polymer Science Part A, 2008, 46, 5214-5222.	2.3	15
66	Influence of catalysts used in synthesis of poly(p-dioxanone) on its thermal degradation behaviors. Polymer Degradation and Stability, 2015, 121, 253-260.	5.8	15
67	An efficient approach to synthesize polysaccharidesâ€ <i>graft</i> â€poly(<i>p</i> â€dioxanone) copolymers as potential drug carriers. Journal of Polymer Science Part A, 2009, 47, 5344-5353.	2.3	14
68	4D Printing of a Fully Biobased Shape Memory Copolyester <i>via</i> a UV-Assisted FDM Strategy. ACS Sustainable Chemistry and Engineering, 2022, 10, 6304-6312.	6.7	14
69	Single-walled carbon nanotubes as adaptable one-dimensional crosslinker to bridge multi-responsive shape memory network via π–π stacking. Composites Communications, 2019, 14, 48-54.	6.3	13
70	Chain-extension and thermal behaviors of poly(p-dioxanone) with toluene-2,4-diisocyanate. Reactive and Functional Polymers, 2005, 65, 309-315.	4.1	11
71	Thermal and Thermo-Oxidative Degradation of Biodegradable Poly(Ester Urethane) Containing Poly(L-Lactic Acid) and Poly(Butylene Succinate) Blocks. Journal of Macromolecular Science - Physics, 2009, 48, 635-649.	1.0	11
72	A Novel Potential Ecomaterial Based on Poly(<i>p</i> Dioxanone)/Montmorillonite Nanocomposite With Improved Crystalline, Processing, and Mechanical Properties. Journal of Macromolecular Science - Physics, 2009, 48, 1031-1041.	1.0	10

#	Article	IF	CITATIONS
73	A facile approach to preparation of long-chain-branched poly(p-dioxanone). European Polymer Journal, 2010, 46, 24-33.	5.4	10
74	Degradation of nylon 6 to produce a "pseudo―amino acid ionic liquid. Polymer Degradation and Stability, 2014, 109, 171-174.	5.8	10
75	A high-strength and healable shape memory supramolecular polymer based on pyrene-naphthalene diimide complexes. Polymer, 2020, 190, 122228.	3.8	10
76	AlEt3-H2O-H3PO4 catalyzed polymerizations of 1, 4-dioxan-2-one. Polymer Bulletin, 2005, 54, 187-193.	3.3	9
77	Biodegradable poly(<i>p</i> à€dioxanone) reinforced and toughened by organoâ€modified vermiculite. Polymers for Advanced Technologies, 2011, 22, 993-1000.	3.2	9
78	Impact behavior and fracture morphology of acrylonitrileâ€"butadieneâ€"styrene resins toughened by linear random styreneâ€"isopreneâ€"butadiene rubber. Journal of Applied Polymer Science, 2011, 121, 2458-2466.	2.6	9
79	Multiscale shape-memory effects in a dynamic polymer network for synchronous changes in color and shape. Applied Materials Today, 2022, 26, 101276.	4.3	8
80	The influence of the surface character of the clays on the properties of poly(<i>p</i> àâ€dioxanone)/fibrous clay nanocomposites. Journal of Applied Polymer Science, 2012, 125, E247.	2.6	7
81	Synthesis of block copolymers of poly(p-dioxanone) block poly(tetrahydrofuran). Polymer Bulletin, 2006, 57, 151-156.	3.3	6
82	Photo-cross-linking of Anthracene as a Versatile Strategy to Design Shape Memory Polymers. Materials Today: Proceedings, 2019, 16, 1524-1530.	1.8	6
83	Fabrication of Shapeâ€Memory Aerogel Based on Chitosan/Poly(ethylene glycol) Diacrylate Semiâ€Interpenetrating Networks via a Facile and Ecoâ€Friendly Strategy. Macromolecular Materials and Engineering, 2019, 304, 1900169.	3.6	6
84	Nonisothermal Crystallization Behaviors of Flame-Retardant Copolyester/Montmorillonite Nanocomposites. Journal of Macromolecular Science - Physics, 2009, 48, 927-940.	1.0	5
85	PPDO-PU/Montmorillonite Nanocomposites Prepared by Chain-Extending Reaction: Thermal Stability, Mechanical Performance and Rheological Behavior. Soft Materials, 2011, 9, 393-408.	1.7	5
86	Design of melt-recyclable poly($\hat{l}\mu$ -caprolactone)-based supramolecular shape-memory nanocomposites. RSC Advances, 2018, 8, 27119-27130.	3.6	5
87	PROPERTIES OF POLY(<i>p</i> pâ€DIOXANONEâ€URETHANE) COPOLYMERS WITH CONTROLLABLE STRUCTURES. Soft Materials, 2009, 7, 277-295.	1.7	4
88	Degradation of polylactide using basic ionic liquid imidazolium acetates. Chemical Papers, 2014, 68, .	2.2	4
89	The influence of coexisted monomer on thermal, mechanical, and hydrolytic properties of poly(<i>p</i> pi>sedioxanone). Journal of Applied Polymer Science, 2016, 133, .	2.6	3
90	Characterization of Electrospun Poly(<i>p</i> -dioxanone) and Poly(<i>p</i> -dioxanone)/Clay Nanocomposite Fibers. Journal of Nanoscience and Nanotechnology, 2011, 11, 1609-1612.	0.9	2

#	Article	IF	CITATIONS
91	Thermal Degradation, Crystallization, and Rheological Behavior of Biodegradable Poly(<i>p</i> -dioxanone)/Synthetic Hectorite Nanocomposites. Soft Materials, 2013, 11, 98-107.	1.7	2
92	Nonisothermal crystallization behaviors of biodegradable double crystalline poly(butylene) Tj ETQqO 0 0 rgBT /Ov	verlock 10 2.6	Tf ₂ 50 702 Td
93	Design of Healable Shape-Memory Materials from Dynamic Interactions. Materials Today: Proceedings, 2019, 16, 1502-1506.	1.8	2
94	A biodegradable copolymer from coupling poly(pdioxanone) with poly(ethylene succinate) via toluene-2,4- diisocyanate. E-Polymers, 2009, 9, .	3.0	0
95	Notice of Retraction: How to learn polymer science well for university students whose major is not polymer science. , $2010, , .$		0
96	Crystallization behavior of poly(<i>p</i> â€dioxanone)â€PU/montmorillonite nanocomposites prepared by chainâ€extending reaction. Journal of Applied Polymer Science, 2013, 127, 4093-4101.	2.6	0