Francisco Javier Quintero Cortes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5755068/publications.pdf Version: 2024-02-01

Francisco Javier Quintero

#	Article	IF	CITATIONS
1	Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte. ACS Energy Letters, 2019, 4, 1475-1483.	8.8	196
2	Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nature Materials, 2021, 20, 503-510.	13.3	194
3	Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure. ACS Energy Letters, 2019, 4, 591-599.	8.8	168
4	Chemo-Mechanical Challenges in Solid-State Batteries. Trends in Chemistry, 2019, 1, 845-857.	4.4	158
5	Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure. ECS Meeting Abstracts, 2019, , .	0.0	122
6	Avoiding Fracture in a Conversion Battery Material through Reaction with Larger Ions. Joule, 2018, 2, 1783-1799.	11.7	65
7	How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050502.	1.3	43
8	Operando Synchrotron Measurement of Strain Evolution in Individual Alloying Anode Particles within Lithium Batteries. ACS Energy Letters, 2018, 3, 349-355.	8.8	32
9	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28
10	Empirical kinetics for the growth of titania nanotube arrays by potentiostatic anodization in ethylene glycol. Materials and Design, 2016, 96, 80-89.	3.3	24
11	Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cmâ^'3. Materials, 2015, 8, 6208-6227.	1.3	15
12	Novel Materials with Effective Super Dielectric Constants for Energy Storage. Journal of Electronic Materials, 2015, 44, 1367-1376.	1.0	10
13	Understanding the Effects of Alloy Films on the Electrochemical Behavior of Lithium Metal Anodes with Operando Optical Microscopy. Journal of the Electrochemical Society, 2021, 168, 100517.	1.3	10
14	Testing the Tube Super-Dielectric Material Hypothesis: Increased Energy Density Using NaCl. Journal of Electronic Materials, 2016, 45, 5499-5506.	1.0	7
15	In situ investigation of dynamic processes in materials for energy storage. , 2018, , .		0
16	The Role of Metallic Protection Layers in Extending the Stability of Nasicon Electrolytes for Solid-State Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
17	In Situ characterization of Reactive Lithium Metal Interfaces in Solid-State Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 974-974.	0.0	0