
Magdalena Kaus-Drobek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleobindin-2 consists of two structural components: The Zn2+-sensitive N-terminal half, consisting of nesfatin-1 and -2, and the Ca2+-sensitive C-terminal half, consisting of nesfatin-3. Computational and Structural Biotechnology Journal, 2021, 19, 4300-4318.	4.1	4
2	Impact of Câ€ŧerminal truncations in the <i>Arabidopsis</i> Rab escort protein (REP) on REP–Rab interaction and plant fertility. Plant Journal, 2021, 108, 1400-1421.	5.7	4
3	Vimentin Sâ€glutathionylation at Cys328 inhibits filament elongation and induces severing of mature filaments <i>inÂvitro</i> . FEBS Journal, 2020, 287, 5304-5322.	4.7	24
4	Intrinsically disordered N-terminal domain of the Helicoverpa armigera Ultraspiracle stabilizes the dimeric form via a scorpion-like structure. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 167-183.	2.5	5
5	Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. Journal of Biological Chemistry, 2016, 291, 24931-24950.	3.4	40
6	Insight into the Unfolding Properties of Chd64, a Small, Single Domain Protein with a Globular Core and Disordered Tails. PLoS ONE, 2015, 10, e0137074.	2.5	12
7	Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen–deuterium exchange. Journal of Structural Biology, 2015, 192, 426-440.	2.8	13
8	Structural basis of the methylation specificity of R.Dpnl. Nucleic Acids Research, 2014, 42, 8745-8754.	14.5	26
9	Patterns of structural dynamics in RACK1 protein retained throughout evolution: A hydrogenâ€deuterium exchange study of three orthologs. Protein Science, 2014, 23, 639-651.	7.6	10
10	Mia40 and <scp>MINOS</scp> act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1. FEBS Journal, 2013, 280, 4943-4959.	4.7	33
11	A Complex Containing the CPSF73 Endonuclease and Other Polyadenylation Factors Associates with U7 snRNP and Is Recruited to Histone Pre-mRNA for 3′-End Processing. Molecular and Cellular Biology, 2013, 33, 28-37.	2.3	67
12	Alu-repeat-induced deletions within the <i>NCF2</i> gene causing p67- <i>phox</i> -deficient chronic granulomatous disease (CGD). Human Mutation, 2010, 31, 151-158.	2.5	19
13	Restriction endonuclease Mval is a monomer that recognizes its target sequence asymmetrically. Nucleic Acids Research, 2007, 35, 2035-2046.	14.5	40
14	Monomeric Restriction Endonuclease BcnI in the Apo Form and in an Asymmetric Complex with Target DNA. Journal of Molecular Biology, 2007, 369, 722-734.	4.2	32
15	Restriction endonucleases that resemble a component of the bacterial DNA repair machinery. Cellular and Molecular Life Sciences, 2007, 64, 2351-2357.	5.4	7