
## **Eleanor S Lee**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5755017/publications.pdf Version: 2024-02-01



FLEANOR SLEE

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Daylight metrics and energy savings. Lighting Research and Technology, 2009, 41, 261-283.                                                                                                                                                 | 1.2 | 238       |
| 2  | Thermal and daylighting performance of an automated venetian blind and lighting system in a full-scale private office. Energy and Buildings, 1998, 29, 47-63.                                                                             | 3.1 | 145       |
| 3  | Application issues for large-area electrochromic windows in commercial buildings. Solar Energy<br>Materials and Solar Cells, 2002, 71, 465-491.                                                                                           | 3.0 | 142       |
| 4  | United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings. Building and Environment, 2015, 89, 107-117.                                                                              | 3.0 | 124       |
| 5  | A validation of the Radiance three-phase simulation method for modelling annual daylight<br>performance of optically complex fenestration systems. Journal of Building Performance Simulation,<br>2013, 6, 24-37.                         | 1.0 | 121       |
| 6  | Subject responses to electrochromic windows. Energy and Buildings, 2006, 38, 758-779.                                                                                                                                                     | 3.1 | 110       |
| 7  | Energy and visual comfort performance of electrochromic windows with overhangs. Building and Environment, 2007, 42, 2439-2449.                                                                                                            | 3.0 | 110       |
| 8  | Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications. Solar Energy Materials and Solar Cells, 2014, 123, 65-80.                                                   | 3.0 | 101       |
| 9  | Office worker response to an automated Venetian blind and electric lighting system: a pilot study.<br>Energy and Buildings, 1998, 28, 205-218.                                                                                            | 3.1 | 100       |
| 10 | Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort. Energy and Buildings, 2013, 61, 8-20.                                                                              | 3.1 | 99        |
| 11 | Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window. Applied Energy, 2019, 242, 854-872.                                                                                              | 5.1 | 89        |
| 12 | The New York Times Headquarters daylighting mockup: Monitored performance of the daylighting control system. Energy and Buildings, 2006, 38, 914-929.                                                                                     | 3.1 | 86        |
| 13 | Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering<br>Distribution Functions within Radiance. LEUKOS - Journal of Illuminating Engineering Society of<br>North America, 2011, 7, 241-261. | 1.5 | 86        |
| 14 | Regional performance targets for transparent near-infrared switching electrochromic window glazings. Building and Environment, 2013, 61, 160-168.                                                                                         | 3.0 | 84        |
| 15 | Daylighting control performance of a thin-film ceramic electrochromic window: Field study results.<br>Energy and Buildings, 2006, 38, 30-44.                                                                                              | 3.1 | 80        |
| 16 | A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems. Solar Energy, 2013, 98, 404-414.                                                                   | 2.9 | 76        |
| 17 | End user impacts of automated electrochromic windows in a pilot retrofit application. Energy and Buildings, 2012, 47, 267-284.                                                                                                            | 3.1 | 74        |
| 18 | Balancing daylight, glare, and energy-efficiency goals: An evaluation of exterior coplanar shading systems using complex fenestration modeling tools. Energy and Buildings, 2016, 112, 279-298.                                           | 3.1 | 70        |

ELEANOR S LEE

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Advanced Optical Daylighting Systems: Light Shelves and Light Pipes. Leukos, 1997, 26, 91-106.                                                                                                  | 0.3 | 50        |
| 20 | An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives. Solar Energy Materials and Solar Cells, 2013, 116, 14-26.      | 3.0 | 50        |
| 21 | Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation. Solar Energy, 2018, 160, 380-395.                                                     | 2.9 | 47        |
| 22 | Monitored lighting energy savings from dimmable lighting controls in The New York Times<br>Headquarters Building. Energy and Buildings, 2014, 68, 498-514.                                      | 3.1 | 46        |
| 23 | U.S. energy savings potential from dynamic daylighting control glazings. Energy and Buildings, 2013, 66, 415-423.                                                                               | 3.1 | 45        |
| 24 | The Effect of Venetian Blinds on Daylight Photoelectric Control Performance. Leukos, 1999, 28, 3-23.                                                                                            | 0.3 | 37        |
| 25 | Daylight performance of a microstructured prismatic window film in deep open plan offices. Building and Environment, 2017, 113, 280-297.                                                        | 3.0 | 34        |
| 26 | Angular selective window systems: Assessment of technical potential for energy savings. Energy and<br>Buildings, 2015, 90, 188-206.                                                             | 3.1 | 33        |
| 27 | Measured daylighting potential of a static optical louver system under real sun and sky conditions.<br>Building and Environment, 2015, 92, 347-359.                                             | 3.0 | 30        |
| 28 | Low-cost networking for dynamic window systems. Energy and Buildings, 2004, 36, 503-513.                                                                                                        | 3.1 | 27        |
| 29 | Advocating for view and daylight in buildings: Next steps. Energy and Buildings, 2022, 265, 112079.                                                                                             | 3.1 | 27        |
| 30 | Solar energy integration in buildings. Applied Energy, 2020, 264, 114740.                                                                                                                       | 5.1 | 25        |
| 31 | Performance of integrated systems of automated roller shade systems and daylight responsive dimming systems. Building and Environment, 2011, 46, 747-757.                                       | 3.0 | 23        |
| 32 | Comparative study on the overall energy performance between photovoltaic and Low-E insulated glass units. Solar Energy, 2021, 214, 443-456.                                                     | 2.9 | 23        |
| 33 | Integrated control of dynamic facades and distributed energy resources for energy cost minimization in commercial buildings. Solar Energy, 2015, 122, 1384-1397.                                | 2.9 | 22        |
| 34 | An assessment of the load modifying potential of model predictive controlled dynamic facades within the California context. Energy and Buildings, 2020, 210, 109762.                            | 3.1 | 22        |
| 35 | Visual quality assessment of electrochromic and conventional glazings. Solar Energy Materials and Solar Cells, 1998, 54, 157-164.                                                               | 3.0 | 18        |
| 36 | Empirical Assessment of a Prismatic Daylight-Redirecting Window Film in a Full-Scale Office Testbed.<br>LEUKOS - Journal of Illuminating Engineering Society of North America, 2014, 10, 19-45. | 1.5 | 17        |

ELEANOR S LEE

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Efficient modeling of optically-complex, non-coplanar exterior shading: Validation of matrix algebraic methods. Energy and Buildings, 2018, 174, 464-483.                                                                                   | 3.1 | 17        |
| 38 | Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial<br>Buildings using High Resolution Luminance Images. LEUKOS - Journal of Illuminating Engineering<br>Society of North America, 2011, 7, 167-188. | 1.5 | 15        |
| 39 | Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with<br>parallel computing on heterogeneous hardware of personal computer. Journal of Building<br>Performance Simulation, 2014, 7, 152-163.       | 1.0 | 15        |
| 40 | Modeling specular transmission of complex fenestration systems with data-driven BSDFs. Building and Environment, 2021, 196, 107774.                                                                                                         | 3.0 | 14        |
| 41 | Window View Quality: Why It Matters and What We Should Do. LEUKOS - Journal of Illuminating<br>Engineering Society of North America, 2022, 18, 259-267.                                                                                     | 1.5 | 14        |
| 42 | Developing a Dynamic Envelope/Lighting Control System with Field Measurements. Leukos, 1997, 26, 146-164.                                                                                                                                   | 0.3 | 12        |
| 43 | Evaluation of integrated daylighting and electric lighting design projects: Lessons learned from international case studies. Energy and Buildings, 2022, 268, 112191.                                                                       | 3.1 | 12        |
| 44 | Daylight simulation workflows incorporating measured bidirectional scattering distribution functions. Energy and Buildings, 2022, 259, 111890.                                                                                              | 3.1 | 9         |
| 45 | Field validation of data-driven BSDF and peak extraction models for light-scattering fabric shades.<br>Energy and Buildings, 2022, 262, 112002.                                                                                             | 3.1 | 8         |
| 46 | Potential annual daylighting performance of a high-efficiency daylight redirecting slat system.<br>Building Simulation, 2021, 14, 495-510.                                                                                                  | 3.0 | 7         |
| 47 | Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control. Proceedings of SPIE, 2008, , .                                                                                               | 0.8 | 6         |
| 48 | Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with<br>Advanced Window and Shading Systems. Buildings, 2015, 5, 668-699.                                                                           | 1.4 | 6         |
| 49 | A Preliminary Study on the Performance of Daylight Responsive Dimming Systems with Improved Closed-Loop Control Algorithm. LEUKOS - Journal of Illuminating Engineering Society of North America, 2011, 8, 41-59.                           | 1.5 | 3         |
| 50 | Effects of Overhangs on the Performance of Electrochromic Windows. Architectural Science Review, 2006, 49, 349-356.                                                                                                                         | 1.1 | 2         |
| 51 | Split-pane electrochromic window control based on an embedded photometric device with real-time daylighting computing. Building and Environment, 2019, 161, 106229.                                                                         | 3.0 | 2         |
| 52 | Laboratory testing of a high efficiency light redirection system. Journal of Physics: Conference Series, 2021, 2042, 012117.                                                                                                                | 0.3 | 0         |