
Andrea Schaefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5754894/publications.pdf Version: 2024-02-01

ANDREA SCHAFFED

#	Article	IF	CITATIONS
1	Removal of Natural Hormones by Nanofiltration Membranes:Â Measurement, Modeling, and Mechanisms. Environmental Science & Technology, 2004, 38, 1888-1896.	4.6	521
2	Pharmaceutical Retention Mechanisms by Nanofiltration Membranes. Environmental Science & Technology, 2005, 39, 7698-7705.	4.6	434
3	The role of membrane processes in municipal wastewater reclamation and reuse. Desalination, 2005, 178, 1-11.	4.0	259
4	Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 2014, 117, 679-691.	4.2	247
5	Removal of the Natural Hormone Estrone from Aqueous Solutions Using Nanofiltration and Reverse Osmosis. Environmental Science & Technology, 2003, 37, 182-188.	4.6	242
6	Desalinated versus recycled water: Public perceptions and profiles of the accepters. Journal of Environmental Management, 2009, 90, 888-900.	3.8	242
7	Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens. Advances in Colloid and Interface Science, 2011, 164, 100-117.	7.0	225
8	The Importance of Dehydration in Determining Ion Transport in Narrow Pores. Small, 2012, 8, 1701-1709.	5.2	220
9	Nanofiltration of natural organic matter: Removal, fouling and the influence of multivalent ions. Desalination, 1998, 118, 109-122.	4.0	207
10	Ultrafiltration of natural organic matter. Separation and Purification Technology, 2001, 22-23, 63-78.	3.9	205
11	Fouling effects on rejection in the membrane filtration of natural waters. Desalination, 2000, 131, 215-224.	4.0	203
12	Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. Journal of Membrane Science, 2006, 286, 52-59.	4.1	199
13	Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination, 2010, 261, 331-337.	4.0	199
14	Fate of Steroid Estrogens in Australian Inland and Coastal Wastewater Treatment Plants. Environmental Science & Technology, 2005, 39, 3351-3358.	4.6	175
15	Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. Journal of Membrane Science, 2009, 334, 101-109.	4.1	167
16	Estrogenic hormone removal from wastewater using NF/RO membranes. Journal of Membrane Science, 2004, 242, 37-45.	4.1	164
17	Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia. Chemosphere, 2007, 69, 803-815.	4.2	151
18	Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. Water Research, 2001, 35, 1509-1517.	5.3	145

#	Article	IF	CITATIONS
19	Colloidal Fouling of Ultrafiltration Membranes: Impact of Aggregate Structure and Size. Journal of Colloid and Interface Science, 1999, 212, 264-274.	5.0	139
20	Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems. Separation and Purification Technology, 2011, 77, 60-67.	3.9	138
21	Microfiltration of colloids and natural organic matter. Journal of Membrane Science, 2000, 171, 151-172.	4.1	136
22	Desalination using electrodialysis as a function of voltage and salt concentration. Desalination, 2007, 205, 38-46.	4.0	127
23	Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nature Nanotechnology, 2022, 17, 417-423.	15.6	125
24	Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis. Journal of Membrane Science, 2011, 369, 188-195.	4.1	113
25	Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Science of the Total Environment, 2015, 527-528, 520-529.	3.9	113
26	Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System. Environmental Science & Technology, 2007, 41, 998-1003.	4.6	106
27	Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Research, 2021, 190, 116683.	5.3	102
28	Adsorption and Transport of Trace Contaminant Estrone in NF/RO Membranes. Environmental Engineering Science, 2002, 19, 441-451.	0.8	101
29	Experimental Energy Barriers to Anions Transporting through Nanofiltration Membranes. Environmental Science & Technology, 2013, 47, 1968-1976.	4.6	100
30	Role of hydrophobic and electrostatic interactions for initial enteric virus retention by MF membranes. Journal of Membrane Science, 2001, 194, 69-79.	4.1	97
31	Adsorptive interactions between membranes and trace contaminants. Desalination, 2002, 147, 269-274.	4.0	94
32	Physico-chemical characterization of polyamide NF/RO membranes: Insight from streaming current measurements. Journal of Membrane Science, 2014, 461, 130-138.	4.1	91
33	Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment. Science of the Total Environment, 2010, 408, 2378-2386.	3.9	90
34	The role of NOM fouling for the retention of estradiol and ibuprofen during ultrafiltration. Journal of Membrane Science, 2009, 329, 75-84.	4.1	89
35	Steroid estrogens in ocean sediments. Chemosphere, 2005, 61, 827-833.	4.2	88
36	Renewable Energy Powered Membrane Technology. 2. The Effect of Energy Fluctuations on Performance of a Photovoltaic Hybrid Membrane System. Environmental Science & Technology, 2008, 42, 4563-4569.	4.6	80

#	Article	IF	CITATIONS
37	Removal of adsorbing estrogenic micropollutants by nanofiltration membranes. Part A—Experimental evidence. Journal of Membrane Science, 2013, 431, 244-256.	4.1	80
38	Nanofiltration of Hormone Mimicking Trace Organic Contaminants. Separation Science and Technology, 2005, 40, 2633-2649.	1.3	79
39	Bisphenol A retention in the direct ultrafiltration of greywater. Journal of Membrane Science, 2006, 283, 233-243.	4.1	76
40	Key objectives for water reuse concepts. Desalination, 2008, 218, 120-131.	4.0	75
41	pH dependence of steroid hormone—organic matter interactions at environmental concentrations. Science of the Total Environment, 2009, 407, 1164-1173.	3.9	75
42	Natural organic matter removal by nanofiltration: effects of solution chemistry on retention of low molar mass acids versus bulk organic matter. Journal of Membrane Science, 2004, 242, 73-85.	4.1	74
43	Critical risk points of nanofiltration and reverse osmosis processes in water recycling applications. Desalination, 2006, 187, 303-312.	4.0	73
44	Charge Effects in the Fractionation of Natural Organics Using Ultrafiltration. Environmental Science & Technology, 2002, 36, 2572-2580.	4.6	71
45	Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration. Journal of Membrane Science, 2010, 348, 174-180.	4.1	71
46	Sorption of pesticide endosulfan by electrodialysis membranes. Chemical Engineering Journal, 2011, 166, 233-239.	6.6	70
47	Fouling in greywater recycling by direct ultrafiltration. Desalination, 2006, 187, 283-290.	4.0	69
48	Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC). Journal of Hazardous Materials, 2017, 337, 126-137.	6.5	69
49	Photocatalytic degradation of organic dye via atomic layer deposited TiO2 on ceramic membranes in single-pass flow-through operation. Journal of Membrane Science, 2020, 604, 118015.	4.1	68
50	Particle interactions and removal of trace contaminants from water and wastewaters. Desalination, 2002, 147, 243-250.	4.0	65
51	Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?. Renewable and Sustainable Energy Reviews, 2014, 40, 542-556.	8.2	64
52	Quantifying barriers to monovalent anion transport in narrow non-polar pores. Physical Chemistry Chemical Physics, 2012, 14, 11633.	1.3	60
53	Characterisation and assessment of water treatment technologies for reuse. Desalination, 2008, 218, 92-104.	4.0	59
54	Renewable energy powered membrane technology: Case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis. Separation and Purification Technology, 2016, 170, 445-452.	3.9	57

#	Article	IF	CITATIONS
55	Removal of fluoride and natural organic matter from natural tropical brackish waters by nanofiltration/reverse osmosis with varying water chemistry. Chemosphere, 2019, 217, 47-58.	4.2	57
56	Magnetic ion exchange: Is there potential for international development?. Desalination, 2009, 248, 160-168.	4.0	56
57	Renewable energy powered membrane technology: The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination. Journal of Membrane Science, 2011, 370, 34-44.	4.1	56
58	Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination. Applied Energy, 2019, 253, 113524.	5.1	56
59	Photovoltaic-powered desalination system for remote Australian communities. Renewable Energy, 2003, 28, 2013-2022.	4.3	55
60	Estrogenic micropollutant adsorption dynamics onto nanofiltration membranes. Journal of Membrane Science, 2011, 381, 132-141.	4.1	54
61	Electrodialytic removal of NaCl from water: Impacts of using pulsed electric potential on ion transport and water dissociation phenomena. Journal of Membrane Science, 2013, 435, 99-109.	4.1	52
62	Inorganic trace contaminant removal from real brackish groundwater using electrodialysis. Separation and Purification Technology, 2017, 187, 426-435.	3.9	52
63	Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end). Journal of Membrane Science, 2019, 585, 67-80.	4.1	52
64	Municipal wastewater reclamation: where do we stand? An overview of treatment technology and management practice. Water Science and Technology: Water Supply, 2005, 5, 77-85.	1.0	51
65	Renewable energy powered membrane technology: Fluoride removal in a rural community in northern Tanzania. Separation and Purification Technology, 2015, 149, 349-361.	3.9	51
66	Implications of humic acid, inorganic carbon and speciation on fluoride retention mechanisms in nanofiltration and reverse osmosis. Journal of Membrane Science, 2017, 528, 82-94.	4.1	50
67	Removal of steroid micropollutants by polymer-based spherical activated carbon (PBSAC) assisted membrane filtration. Journal of Hazardous Materials, 2018, 353, 514-521.	6.5	49
68	Adsorption of the Endocrine-Active Compound Estrone on Microfiltration Hollow Fiber Membranes. Environmental Science & Technology, 2003, 37, 3158-3163.	4.6	48
69	Renewable energy-powered membrane technology: Supercapacitors for buffering resource fluctuations in a wind-powered membrane system for brackish water desalination. Renewable Energy, 2013, 50, 126-135.	4.3	48
70	Organic fouling control through magnetic ion exchangeâ€nanofiltration (MIEXâ€NF) in water treatment. Journal of Membrane Science, 2018, 549, 474-485.	4.1	47
71	Removal of arsenic(V) by nanofiltration: Impact of water salinity, pH and organic matter. Journal of Membrane Science, 2021, 618, 118631.	4.1	47
72	Social aspects of a solar-powered desalination unit for remote Australian communities. Desalination, 2007, 203, 375-393.	4.0	45

#	Article	IF	CITATIONS
73	Impact of speciation on fluoride, arsenic and magnesium retention by nanofiltration/reverse osmosis in remote Australian communities. Desalination, 2009, 248, 177-183.	4.0	45
74	Renewable energy powered membrane technology: Impact of solar irradiance fluctuations on performance of a brackish water reverse osmosis system. Separation and Purification Technology, 2015, 156, 379-390.	3.9	45
75	Renewable energy powered membrane technology: Brackish water desalination system operated using real wind fluctuations and energy buffering. Journal of Membrane Science, 2014, 468, 224-232.	4.1	44
76	Quantification of Solute–Solute Interactions Using Negligible-Depletion Solid-Phase Microextraction: Measuring the Affinity of Estradiol to Bulk Organic Matter. Environmental Science & Technology, 2008, 42, 2886-2892.	4.6	43
77	Sorption of micropollutant estrone to a water treatment ion exchange resin. Journal of Environmental Monitoring, 2010, 12, 311-317.	2.1	43
78	Fouling autopsy of hollow-fibre MF membranes in wastewater reclamation. Desalination, 2006, 188, 113-121.	4.0	40
79	Design considerations for a solar-powered desalination system for remote communities in Australia. Desalination, 2002, 144, 193-199.	4.0	39
80	Adsorption of trace steroid estrogens to hydrophobic hollow fibre membranes. Desalination, 2002, 146, 381-386.	4.0	39
81	Poly(ether sulfone) Nanofibers Impregnated with β-Cyclodextrin for Increased Micropollutant Removal from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 2942-2953.	3.2	37
82	Fouling mechanisms of submerged ultrafiltration membranes in greywater recycling. Desalination, 2005, 179, 215-223.	4.0	36
83	Recycled and desalinated water: Consumers' associations, and the influence of affect and disgust on willingness to use. Journal of Environmental Management, 2020, 261, 110217.	3.8	36
84	Testing of a hybrid membrane system for groundwater desalination in an Australian national park. Desalination, 2005, 183, 55-62.	4.0	34
85	Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes. Journal of Hazardous Materials, 2020, 391, 122020.	6.5	34
86	Removal of adsorbing estrogenic micropollutants by nanofiltration membranes: Part B—Modeldevelopment. Journal of Membrane Science, 2013, 431, 257-266.	4.1	32
87	Application of solar-powered desalination in a remote town in South Australia. Desalination, 2009, 248, 72-82.	4.0	31
88	Efficient Photocatalytic Removal of Methylene Blue Using a Metalloporphyrin–Poly(vinylidene) Tj ETQq0 0 0 rg 31763-31776.	BT /Overlc 4.0	ock 10 Tf 50 1 31
89	Renewable energy powered membrane technology: System resilience under solar irradiance fluctuations during the treatment of fluoride-rich natural waters by different nanofiltration/reverse osmosis membranes. Journal of Membrane Science, 2021, 617, 118452.	4.1	31
90	Assessment of Trace Estrogenic Contaminants Removal by Coagulant Addition, Powdered Activated Carbon Adsorption and Powdered Activated Carbon/Microfiltration Processes. Journal of Environmental Engineering, ASCE, 2004, 130, 736-742.	0.7	30

#	Article	IF	CITATIONS
91	Seasonal variation of organic matter concentration and characteristics in the Maji ya Chai River (Tanzania): Impact on treatability by ultrafiltration. Water Research, 2016, 101, 370-381.	5.3	29
92	Renewable energy powered membrane technology: Safe operating window of a brackish water desalination system. Journal of Membrane Science, 2014, 468, 400-409.	4.1	28
93	From concept to commercialisation: student learning in a sustainable engineering innovation project. European Journal of Engineering Education, 2007, 32, 143-165.	1.5	27
94	Impact of organic matrix compounds on the retention of steroid hormone estrone by a †loose' nanofiltration membrane. Separation and Purification Technology, 2010, 73, 179-187.	3.9	27
95	Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. Journal of Hazardous Materials, 2020, 397, 122779.	6.5	26
96	Comparison of Photocatalytic Membrane Reactor Types for the Degradation of an Organic Molecule by TiO2-Coated PES Membrane. Catalysts, 2020, 10, 725.	1.6	26
97	Impact of speciation on behaviour of uranium in a solar powered membrane system for treatment of brackish groundwater. Separation and Purification Technology, 2010, 71, 89-96.	3.9	25
98	Potential of wind-powered renewable energy membrane systems for Ghana. Desalination, 2009, 248, 169-176.	4.0	24
99	The effect of intermittent operation on a wind-powered membrane system for brackish water desalination. Water Science and Technology, 2012, 65, 867-874.	1.2	24
100	Removal of steroid hormone micropollutants by UF-PBSAC composite in presence of organic matter. Journal of Membrane Science, 2019, 592, 117315.	4.1	24
101	System design and performance testing of a hybrid membrane — photovltaic desalination system. Desalination, 2005, 179, 51-59.	4.0	23
102	Removal of inorganic trace contaminants by electrodialysis in a remote Australian community. Desalination, 2009, 248, 48-57.	4.0	23
103	Quantification of solute–solute interactions in steroidal hormone removal by ultrafiltration membranes. Separation and Purification Technology, 2012, 90, 31-38.	3.9	23
104	Seasonal variation of organic matter characteristics and fluoride concentration in the Maji ya Chai River (Tanzania): Impact on treatability by nanofiltration/reverse osmosis. Science of the Total Environment, 2018, 637-638, 1209-1220.	3.9	23
105	Investigation of the reaction kinetics of photocatalytic pollutant degradation under defined conditions with inkjet-printed TiO ₂ films – from batch to a novel continuous-flow microreactor. Reaction Chemistry and Engineering, 2020, 5, 1658-1670.	1.9	23
106	Removal and fouling mechanisms in nanofiltration of polysaccharide solutions. Desalination, 2005, 178, 149-159.	4.0	22
107	A new approach to increasing diversity in engineering at the example of women in engineering. European Journal of Engineering Education, 2006, 31, 661-671.	1.5	22
108	Removal of Naturally Occurring Strontium by Nanofiltration/Reverse Osmosis from Groundwater. Membranes, 2020, 10, 321.	1.4	22

#	Article	IF	CITATIONS
109	Sorption of steroidal hormones by electrodialysis membranes. Journal of Membrane Science, 2010, 365, 198-205.	4.1	21
110	Impact of laterite characteristics on fluoride removal from water. Journal of Chemical Technology and Biotechnology, 2016, 91, 911-920.	1.6	21
111	Interactions between carbon-based nanoparticles and steroid hormone micropollutants in water. Journal of Hazardous Materials, 2021, 402, 122929.	6.5	21
112	Photodegradation of steroid-hormone micropollutants in a flow-through membrane reactor coated with Pd(II)-porphyrin. Applied Catalysis B: Environmental, 2021, 291, 120097.	10.8	21
113	Polymer-based spherical activated carbon – ultrafiltration (UF-PBSAC) for the adsorption of steroid hormones from water: Material characteristics and process configuration. Water Research, 2020, 185, 116249.	5.3	20
114	Physico-chemical water quality in Ghana: Prospects for water supply technology implementation. Desalination, 2009, 248, 193-203.	4.0	19
115	Renewable energy powered membrane technology: Impact of pH and ionic strength on fluoride and natural organic matter removal. Science of the Total Environment, 2018, 621, 138-147.	3.9	19
116	Direct coagulation pretreatment in nanofiltration of waters rich in organic matter and calcium. Water Science and Technology: Water Supply, 2001, 1, 25-33.	1.0	18
117	Quantification of Hormone–Humic Acid Interactions in Nanofiltration. Environmental Science & Technology, 2012, 46, 10597-10604.	4.6	18
118	Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants. Separation and Purification Technology, 2021, 264, 118405.	3.9	18
119	Removal of arsenic(III) via nanofiltration: contribution of organic matter interactions. Water Research, 2021, 201, 117315.	5.3	18
120	Organic matter interference with steroid hormone removal by single-walled carbon nanotubesÂâ^Âultrafiltration composite membrane. Water Research, 2021, 199, 117148.	5.3	17
121	Renewable energy powered membrane technology: Experimental investigation of system performance with variable module size and fluctuating energy. Separation and Purification Technology, 2019, 221, 64-73.	3.9	16
122	Membranes and renewable energy — a new era of sustainable development for developing countries. Membrane Technology, 2005, 2005, 6-10.	0.5	15
123	Impact of speciation on removal of manganese and organic matter by nanofiltration. Journal of Water Supply: Research and Technology - AQUA, 2010, 59, 152-163.	0.6	15
124	Solid-phase microextraction to determine micropollutant–macromolecule partition coefficients. Nature Protocols, 2016, 11, 1328-1344.	5.5	15
125	Renewable energy-powered membrane technology in Tanzanian communities. Npj Clean Water, 2018, 1, .	3.1	14
126	Methods for selenium removal from contaminated waters: a review. Environmental Chemistry Letters, 2022, 20, 2019-2041.	8.3	14

#	Article	IF	CITATIONS
127	A performance comparison of individual and combined treatment modules for water recycling. Environmental Progress, 2005, 24, 383-391.	0.8	13
128	Micropollutants breakthrough curve phenomena in nanofiltration: Impact of operational parameters. Separation and Purification Technology, 2021, 267, 118406.	3.9	13
129	Relevance of the precautionary principle in water recycling. Desalination, 2006, 187, 241-252.	4.0	12
130	Chapter 7 Micropollutants in Water Recycling: A Case Study of N-Nitrosodimethylamine (NDMA) Exposure from Water versus Food. Sustainability Science and Engineering, 2010, , 203-228.	0.6	12
131	Renewable energy powered membrane technology: Energy buffering control system for improved resilience to periodic fluctuations of solar irradiance. Renewable Energy, 2020, 149, 877-889.	4.3	12
132	Influence of pH on Losses of Analyte Estradiol in Sample Prefiltration. Environmental Engineering Science, 2009, 26, 1157-1161.	0.8	11
133	Renewable energy powered membrane technology: Computational fluid dynamics evaluation of system performance with variable module size and fluctuating energy. Separation and Purification Technology, 2019, 220, 206-216.	3.9	11
134	Renewable energy powered membrane technology: Impact of solar irradiance fluctuation on direct osmotic backwash. Journal of Membrane Science, 2020, 598, 117666.	4.1	11
135	Separation and degradation detection of nanogram-per-litre concentrations of radiolabelled steroid hormones using combined liquid chromatography and flow scintillation analysis. Scientific Reports, 2020, 10, 7095.	1.6	11
136	Cyclodextrin Composite Nanofiber Membrane: Impact of the Crosslinker Type on Steroid Hormone Micropollutant Removal from Water. ACS Applied Polymer Materials, 2021, 3, 2646-2656.	2.0	11
137	Technologies to Remove Selenium from Water and Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 207-304.	0.3	11
138	Ultrafiltration to Supply Drinking Water in International Development: A Review of Opportunities. , 2009, , 151-168.		9
139	Water–Energy Nexus Perspectives in the Context of Photovoltaicâ€Powered Decentralized Water Treatment Systems: A Tanzanian Case Study. Energy Technology, 2017, 5, 1112-1123.	1.8	9
140	Regeneration of β yclodextrin Based Membrane by Photodynamic Disulfide Exchange — Steroid Hormone Removal from Water. Advanced Materials Interfaces, 2020, 7, 1902100.	1.9	9
141	Renewable energy powered membrane technology: Impact of osmotic backwash on scaling during solar irradiance fluctuation. Journal of Membrane Science, 2021, 619, 118799.	4.1	9
142	Performance of a small solar-powered hybrid membrane system for remote communities under varying feedwater salinities. Water Science and Technology: Water Supply, 2004, 4, 233-243.	1.0	9
143	Chapter 12 Renewable Energy Powered Water Treatment Systems. Sustainability Science and Engineering, 2010, , 353-373.	0.6	8
144	Renewable energy powered membrane technology: Impact of osmotic backwash on organic fouling during solar irradiance fluctuation. Journal of Membrane Science, 2022, 647, 120286.	4.1	7

#	Article	IF	CITATIONS
145	Renewable energy powered membrane technology: Energy consumption analysis of ultrafiltration backwash configurations. Separation and Purification Technology, 2022, 287, 120388.	3.9	7
146	Selenium species removal by nanofiltration: Determination of retention mechanisms. Science of the Total Environment, 2022, 829, 154287.	3.9	7
147	Estradiol Uptake in a Combined Magnetic Ion Exchange - Ultrafiltration (MIEX-UF) Process During Water Treatment. Current Pharmaceutical Design, 2017, 23, 328-337.	0.9	6
148	Xenobiotics Removal by Membrane Technology: An Overview. Environmental Pollution, 2010, , 307-338.	0.4	5
149	Fate of steroid hormone micropollutant estradiol in a hybrid magnetic ion exchange resin-nanofiltration process. Environmental Chemistry, 2019, 16, 630.	0.7	5
150	Noble-metal-free photosensitizers for continuous-flow photochemical oxidation of steroid hormone micropollutants under sunlight. Journal of Membrane Science, 2022, 642, 119981.	4.1	5
151	Autonomous Solar-Powered Desalination Systems for Remote Communities. , 2017, , 75-125.		4
152	Impact of Feedwater Salinity on Energy Requirements of a Small-Scale Membrane Filtration System. , 2009, , 123-137.		4
153	Renewable energy powered membrane systems: inorganic contaminant removal from Australian groundwaters. Membrane Water Treatment, 2011, 2, 239-250.	0.5	4
154	Renewable energy powered membrane technology: Implications of adhesive interaction between membrane and organic matter on spontaneous osmotic backwash cleaning. Water Research, 2022, 221, 118752.	5.3	4
155	Renewable Energy Powered Membrane Technology: Electrical Energy Storage Options for a Photovoltaic-Powered Brackish Water Desalination System. Applied Sciences (Switzerland), 2021, 11, 856.	1.3	3
156	Response to Comment on "Experimental Energy Barriers to Anions Transporting through Nanofiltration Membranes― Environmental Science & Technology, 2013, 47, 130717103414008.	4.6	2
157	Fluoride in groundwater in the Bongo District, Ghana: an assessment, health impact and possible mitigation strategies. , 0, 181, 258-272.		1
158	Conference report: Integrated Concepts in Water Recycling 2005. Membrane Technology, 2005, 2005, 7-9.	0.5	0
159	Quantifying Sorption on Membrane and Surface Binding Interactions Using Mass Spectrometry. Procedia Engineering, 2012, 44, 1473-1475.	1.2	0
160	Prospects and State-of-the-Art of Carbon Nanotube Membranes in Desalination Processes. , 2017, , 305-339.		0
161	Removal of steroid hormone micropollutants from water using a membrane composite of UF with permeate side adsorption. Membrane Technology, 2021, 2021, 5-7.	0.5	0