Mats Boman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5754861/publications.pdf

Version: 2024-02-01

567281 361022 1,325 37 15 35 citations h-index g-index papers 37 37 37 2241 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Low-pressure CVD of (Tix,W1-x)Ny from WF6, TiCl4 and NH3. Surface and Coatings Technology, 2022, 438, 128394.	4.8	2
2	Circumventing Thermodynamic Constraints in Nucleation-Controlled Crystallization of Al ₂ TiO ₅ -Based Chemical Vapor Deposition Coatings. Chemistry of Materials, 2022, 34, 5151-5164.	6.7	2
3	Kinetics of the low-pressure chemical vapor deposited tungsten nitride process using tungsten hexafluoride and ammonia precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	6
4	Selective kinetic growth and role of local coordination in forming Al ₂ TiO ₅ -based coatings at lower temperatures. Materials Advances, 2021, 2, 5737-5751.	5.4	4
5	Chemical vapor deposition of TiN on a CoCrFeNi multi-principal element alloy substrate. Surface and Coatings Technology, 2020, 393, 125778.	4.8	14
6	Corrosion properties of CVD grown Ti(C,N) coatings in 3.5â€wt-% NaCl environment. Corrosion Engineering Science and Technology, 2018, 53, 316-320.	1.4	11
7	Corrosion of copper in pure O 2 -free water?. Corrosion Science, 2018, 137, 1-12.	6.6	42
8	A flow-through nanoporous alumina trypsin bioreactor for mass spectrometry peptide fingerprinting. Journal of Proteomics, 2018, 172, 165-172.	2.4	4
9	Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries. Energy and Environmental Science, 2017, 10, 1350-1357.	30.8	152
10	Suppression of boron incorporation at the early growth phases of boronâ€doped diamond thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2595-2599.	1.8	9
11	Phase Formation Behavior in Ultrathin Iron Oxide. Langmuir, 2015, 31, 12372-12381.	3.5	7
12	Optical quantum confinement in low dimensional hematite. Journal of Materials Chemistry A, 2014, 2, 3352-3363.	10.3	43
13	On "how to start a fireâ€, or transverse forced-convection, hyperbaric laser chemical vapor deposition of fibers and textiles. Textile Reseach Journal, 2014, 84, 1976-1986.	2.2	1
14	Glutathione transferases immobilized on nanoporous alumina: Flow system kinetics, screening, and stability. Analytical Biochemistry, 2014, 446, 59-63.	2.4	12
15	Dye-sensitized Solar Cells Employing a SnO2-TiO2 Core-shell Structure Made by Atomic Layer Deposition. Chimia, 2013, 67, 142.	0.6	17
16	Ink-jet printed thin-film transistors with carbon nanotube channels shaped in long strips. Journal of Applied Physics, 2011, 109, 084915.	2.5	20
17	Morpho-structural and luminescent investigations of niobium activated yttrium tantalate powders. Journal of Alloys and Compounds, 2009, 471, 524-529.	5.5	39
18	Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications. Nano Letters, 2009, 9, 3230-3233.	9.1	226

#	Article	IF	CITATIONS
19	Luminescent thin films of nanocrystalline YTaO4:Nb by pulsed laser deposition. Thin Solid Films, 2008, 516, 8431-8435.	1.8	6
20	Demonstration of Microcoil Heaters for Microthrusters. Journal of Propulsion and Power, 2007, 23, 881-884.	2.2	0
21	Fabrication of Well-Ordered High-Aspect-Ratio Nanopore Arrays in TiO2 Single Crystals. Nano Letters, 2006, 6, 1065-1068.	9.1	40
22	Hyperbaric Laser Chemical Vapor Deposition of Carbon Fibers from the 1-Alkenes, 1-Alkynes, and Benzene. Journal of the American Chemical Society, 2006, 128, 4405-4413.	13.7	14
23	Measurements of nanoparticle size distribution produced by laser ablation of tungsten and boron-carbide in N2 ambient. Applied Surface Science, 2006, 252, 4368-4372.	6.1	9
24	Out-of-plane vibrations of quartz resonators used in quartz crystal microbalance measurements in gas phase. Sensors and Actuators A: Physical, 2006, 125, 143-147.	4.1	8
25	Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006, 39, 49-56.	2.4	298
26	Fabrication of High-Aspect-Ratio Prussian Blue Nanotubes Using a Porous Alumina Template. Nano Letters, 2005, 5, 1603-1606.	9.1	119
27	On the growth mechanism of UV laser deposited a-C:H from CH2I2 at room temperature. Applied Surface Science, 2001, 172, 200-206.	6.1	4
28	Laser chemical etching of Cu2O. Applied Surface Science, 1995, 86, 543-547.	6.1	0
29	Inorganic fibers and microstructures directly from the vapor phase. Composites Science and Technology, 1994, 51, 193-212.	7.8	27
30	Freeâ€standing silicon microstructures fabricated by laser chemical processing. Journal of Applied Physics, 1993, 73, 7864-7871.	2.5	29
31	Microfabrication of threeâ€dimensional boron structures by laser chemical processing. Journal of Applied Physics, 1992, 72, 5956-5963.	2.5	54
32	Carbon growth by thermal laser-assisted chemical vapour deposition. Thin Solid Films, 1992, 215, 126-133.	1.8	34
33	Kinetics in thermal laser-assisted chemical vapour deposition of titanium carbide. Thin Solid Films, 1992, 218, 8-14.	1.8	15
34	Laser-induced chemical vapour deposition of TiSi2: Aspects of deposition process, microstructure and resistivity. Thin Solid Films, 1991, 198, 279-292.	1.8	7
35	Laser-assisted chemical vapor deposition of hard and refractory binary compounds. Surface and Coatings Technology, 1991, 49, 221-227.	4.8	12
36	Kinetics and mechanisms in CVD of boron. Journal of Crystal Growth, 1989, 94, 171-181.	1.5	7

#	Article	IF	CITATIONS
37	Selective deposition of tungstenâ€"prediction of selectivity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 2298-2302.	2.1	31