Timothy L Bailey

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5754847/timothy-l-bailey-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17	3,352 citations	11	17
papers		h-index	g-index
17 ext. papers	4,565 ext. citations	11.4 avg, IF	6.19 L-index

#	Paper	IF	Citations
17	STREME: Accurate and versatile sequence motif discovery. <i>Bioinformatics</i> , 2021 ,	7.2	43
16	T-Gene: improved target gene prediction. <i>Bioinformatics</i> , 2020 , 36, 3902-3904	7.2	4
15	MoMo: discovery of statistically significant post-translational modification motifs. <i>Bioinformatics</i> , 2019 , 35, 2774-2782	7.2	52
14	Homodimerization regulates an endothelial specific signature of the SOX18 transcription factor. <i>Nucleic Acids Research</i> , 2018 , 46, 11381-11395	20.1	13
13	Krppel-like factors compete for promoters and enhancers to fine-tune transcription. <i>Nucleic Acids Research</i> , 2017 , 45, 6572-6588	20.1	26
12	Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. <i>Nucleic Acids Research</i> , 2017 , 45, 1130-1143	20.1	23
11	CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data. <i>Nucleic Acids Research</i> , 2017 , 45, e19	20.1	16
10	Differential motif enrichment analysis of paired ChIP-seq experiments. <i>BMC Genomics</i> , 2014 , 15, 752	4.5	17
9	DREME: motif discovery in transcription factor ChIP-seq data. <i>Bioinformatics</i> , 2011 , 27, 1653-9	7.2	716
8	MEME-ChIP: motif analysis of large DNA datasets. <i>Bioinformatics</i> , 2011 , 27, 1696-7	7.2	994
7	Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. <i>BMC Bioinformatics</i> , 2010 , 11, 165	3.6	358
6	Quantifying similarity between motifs. <i>Genome Biology</i> , 2007 , 8, R24	18.3	1065
5	MoMo: Discovery of statistically significant post-translational modification motifs		1
4	MoMo: Discovery of post-translational modification motifs		2
3	STREME: Accurate and versatile sequence motif discovery		5
2	SEA: Simple Enrichment Analysis of motifs		8
1	XSTREME: Comprehensive motif analysis of biological sequence datasets		9