Perng-Kuang Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5754099/publications.pdf

Version: 2024-02-01

55 papers 3,275 citations

28 h-index 55 g-index

57 all docs

57 docs citations

57 times ranked

2154 citing authors

#	Article	IF	Citations
1	New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology. Microbiology Spectrum, 2022, 10, e0079121.	1.2	14
2	Aspergillus flavus La3279, a component strain of the Aflasafeâ,,¢ biocontrol product, contains a partial aflatoxin biosynthesis gene cluster followed by a genomic region highly variable among A. flavus isolates. International Journal of Food Microbiology, 2022, 366, 109559.	2.1	7
3	Deciphering the origin of <i> Aspergillus flavus </i> NRRL21882, the active biocontrol agent of Aflaâ€Guard < sup > ® . Letters in Applied Microbiology, 2021, 72, 509-516.	1.0	11
4	Authentication of Aspergillus parasiticus strains in the genome database of the National Center for Biotechnology Information. BMC Research Notes, 2021, 14, 111.	0.6	5
5	Two New <i>Aspergillus flavus </i> Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production. G3: Genes, Genomes, Genetics, 2020, 10, 3515-3531.	0.8	15
6	Prevalence of NRRL21882-like (Afla-Guard $\hat{A}^{@}$) Aspergillus flavus on sesame seeds grown in research fields in the Mississippi Delta. Biocontrol Science and Technology, 2020, 30, 1090-1099.	0.5	4
7	Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Applied Microbiology and Biotechnology, 2020, 104, 2277-2286.	1.7	47
8	Identification of AflR Binding Sites in the Genome of Aspergillus flavus by ChIP-Seq. Journal of Fungi (Basel, Switzerland), 2020, 6, 52.	1.5	9
9	Genomeâ€wide nucleotide variation distinguishes <i>Aspergillus flavus</i> from <i>Aspergillus oryzae</i> and helps to reveal origins of atoxigenic <i>A. flavus</i> biocontrol strains. Journal of Applied Microbiology, 2019, 127, 1511-1520.	1.4	15
10	Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: Proteome analysis based on TMT. International Journal of Food Microbiology, 2019, 310, 108313.	2.1	25
11	Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment. Applied Microbiology and Biotechnology, 2019, 103, 4889-4897.	1.7	17
12	Transcriptional Regulation of Aflatoxin Biosynthesis and Conidiation in Aspergillus flavus by Wickerhamomyces anomalus WRL-076 for Reduction of Aflatoxin Contamination. Toxins, 2019, 11, 81.	1.5	15
13	Genome Sequence of an Aspergillus flavus CA14 Strain That Is Widely Used in Gene Function Studies. Microbiology Resource Announcements, 2019, 8, .	0.3	4
14	Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection. Applied Microbiology and Biotechnology, 2018, 102, 5209-5220.	1.7	27
15	Monitoring Metabolite Production of Aflatoxin Biosynthesis by Orbitrap Fusion Mass Spectrometry and a D-Optimal Mixture Design Method. Analytical Chemistry, 2018, 90, 14331-14338.	3.2	24
16	Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Fungal Genetics and Biology, 2017, 104, 29-37.	0.9	23
17	Development of an Enzyme-Linked Immunosorbent Assay Method Specific for the Detection of G-Group Aflatoxins. Toxins, 2016, 8, 5.	1.5	14
18	The Aspergillus flavus fluP-associated metabolite promotes sclerotial production. Fungal Biology, 2016, 120, 1258-1268.	1.1	5

#	Article	IF	Citations
19	Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids. Toxins, 2015, 7, 3887-3902.	1.5	69
20	High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae. International Journal of Food Microbiology, 2015, 200, 66-71.	2.1	11
21	Genetic Variability of <i> Aspergillus flavus < /i > Isolates from a Mississippi Corn Field. Scientific World Journal, The, 2014, 2014, 1-8.</i>	0.8	8
22	Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery. Fungal Genetics and Biology, 2014, 68, 39-47.	0.9	20
23	Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genetics and Biology, 2013, 58-59, 71-79.	0.9	72
24	Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus. Applied Microbiology and Biotechnology, 2013, 97, 4289-4300.	1.7	61
25	Deletion of the Aspergillus flavus Orthologue of <i>A. nidulans fluG</i> Reduces Conidiation and Promotes Production of Sclerotia but Does Not Abolish Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2012, 78, 7557-7563.	1.4	79
26	Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biology, 2012, 116, 298-307.	1.1	76
27	Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. International Journal of Food Microbiology, 2012, 154, 192-196.	2.1	54
28	Characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates from pistachio. Mycotoxin Research, 2012, 28, 67-75.	1.3	20
29	Cyclopiazonic acid biosynthesis by <i>Aspergillus flavus </i> . Toxin Reviews, 2011, 30, 79-89.	1.5	17
30	Loss of msnA, a Putative Stress Regulatory Gene, in Aspergillus parasiticus and Aspergillus flavus Increased Production of Conidia, Aflatoxins and Kojic Acid. Toxins, 2011, 3, 82-104.	1.5	88
31	What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae?. International Journal of Food Microbiology, 2010, 138, 189-199.	2.1	75
32	Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. Journal of Microbiological Methods, 2010, 81, 240-246.	0.7	109
33	Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins, 2009, 1, 74-99.	1.5	105
34	Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genetics and Biology, 2009, 46, 176-182.	0.9	125
35	A highly efficient gene-targeting system for Aspergillus parasiticus. Letters in Applied Microbiology, 2008, 46, 587-592.	1.0	36
36	Are the Genes nadA and norB Involved in Formation of Aflatoxin G1?. International Journal of Molecular Sciences, 2008, 9, 1717-1729.	1.8	28

3

#	Article	IF	Citations
37	Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus. Letters in Applied Microbiology, 2007, 44, 131-137.	1.0	11
38	Nonaflatoxigenic Aspergillus flavus TX9-8 competitively prevents aflatoxin accumulation by A. flavus isolates of large and small sclerotial morphotypes. International Journal of Food Microbiology, 2007, 114, 275-279.	2.1	32
39	Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research. Applied Microbiology and Biotechnology, 2007, 76, 977-984.	1.7	38
40	Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers. Applied Microbiology and Biotechnology, 2007, 77, 917-925.	1.7	34
41	Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. International Journal of Food Microbiology, 2006, 108, 172-177.	2.1	84
42	Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genetics and Biology, 2005, 42, 914-923.	0.9	219
43	The Aspergillus parasiticus estA-Encoded Esterase Converts Versiconal Hemiacetal Acetate to Versiconal and Versiconol Acetate to Versiconol in Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2004, 70, 3593-3599.	1.4	27
44	Characterization of the Aspergillus parasiticus Δ12-desaturase gene: a role for lipid metabolism in the Aspergillus–seed interaction. Microbiology (United Kingdom), 2004, 150, 2881-2888.	0.7	61
45	Deletion of the Delta12-oleic acid desaturase gene of a nonaflatoxigenic Aspergillus parasiticus field isolate affects conidiation and sclerotial development. Journal of Applied Microbiology, 2004, 97, 1178-1184.	1.4	15
46	Clustered Pathway Genes in Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2004, 70, 1253-1262.	1.4	713
47	Aflatoxin Biosynthesis Cluster Gene cypA Is Required for G Aflatoxin Formation. Applied and Environmental Microbiology, 2004, 70, 6518-6524.	1.4	169
48	aflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genetics and Biology, 2004, 41, 911-920.	0.9	74
49	Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae. Journal of Biotechnology, 2004, 107, 245-253.	1.9	59
50	The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Molecular Genetics and Genomics, 2003, 268, 711-719.	1.0	148
51	Characterization of a partial duplication of the aflatoxin gene cluster in Aspergillus parasiticus ATCC 56775. Applied Microbiology and Biotechnology, 2002, 58, 632-636.	1.7	31
52	Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia, 2002, 153, 41-48.	1.3	84
53	Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis. Applied Microbiology and Biotechnology, 2001, 55, 585-589.	1.7	53
54	adhA in Aspergillus parasiticus Is Involved in Conversion of 5′-Hydroxyaverantin to Averufin. Applied and Environmental Microbiology, 2000, 66, 4715-4719.	1.4	40

#	Article	IF	CITATIONS
55	Repressor-AFLR interaction modulates aflatoxin biosynthesis in Aspergillus parasiticus. Mycopathologia, 1999, 147, 105-112.	1.3	49