Zhenbin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stability and Activity of Cobalt Antimonate for Oxygen Reduction in Strong Acid. ACS Energy Letters, 2022, 7, 993-1000.	17.4	21
2	<i>M</i> _{<i>x</i>} La _{1–<i>x</i>} SiO _{2–<i>y</i>} N _{<i>z</i>} (<i>M</i> = Ca/Sr/Ba): Elucidating and Tuning the Structure and Eu ²⁺ Local Environments to Develop Full-Visible Spectrum Phosphors. Chemistry of Materials, 2022, 34, 4039-4049.	6.7	14
3	Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 5151-5158.	3.1	32
4	First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS Nano, 2022, 16, 6334-6348.	14.6	23
5	Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nature Energy, 2022, 7, 55-64.	39.5	108
6	Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications, 2022, 13, 2294.	12.8	89
7	A spin promotion effect in catalytic ammonia synthesis. Nature Communications, 2022, 13, 2382.	12.8	38
8	Efficient near-infrared phosphors discovered by parametrizing the Eu(II) 5d-to-4f energy gap. Matter, 2022, 5, 1924-1936.	10.0	31
9	Computation-Aided Discovery and Synthesis of 2D PrOBr Photocatalyst. ACS Energy Letters, 2022, 7, 1980-1986.	17.4	7
10	Origins of the Instability of Nonprecious Hydrogen Evolution Reaction Catalysts at Open-Circuit Potential. ACS Energy Letters, 2021, 6, 2268-2274.	17.4	44
11	Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nature Catalysis, 2021, 4, 463-468.	34.4	156
12	New insights on CO and CO2 hydrogenation for methanol synthesis: The key role of adsorbate-adsorbate interactions on Cu and the highly active MgO-Cu interface. Journal of Catalysis, 2021, 400, 325-331.	6.2	32
13	Electronic tuning of SrIrO3 perovskite nanosheets by sulfur incorporation to induce highly efficient and long-lasting oxygen evolution in acidic media. Applied Catalysis B: Environmental, 2021, 298, 120562.	20.2	55
14	Surface oxygen vacancies promoted Pt redispersion to single-atoms for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 13890-13897.	10.3	38
15	Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO ₂ Hydrogenation over In ₂ O ₃ Surfaces. ACS Catalysis, 2021, 11, 1780-1786.	11.2	88
16	Design Principles for Aqueous Na-Ion Battery Cathodes. Chemistry of Materials, 2020, 32, 6875-6885.	6.7	28
17	Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. Npj Computational Materials, 2020, 6, .	8.7	69
18	Acid-Stable Oxides for Oxygen Electrocatalysis. ACS Energy Letters, 2020, 5, 2905-2908.	17.4	90

ZHENBIN WANG

#	Article	IF	CITATIONS
19	Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 12433-12446.	5.1	17
20	Computational investigation of Zn-doped and undoped SrEu ₂ Fe ₂ O ₇ as potential mixed electron and proton conductors. RSC Advances, 2020, 10, 39988-39994.	3.6	1
21	Cation-Size Mismatch as a Design Principle for Enhancing the Efficiency of Garnet Phosphors. Chemistry of Materials, 2020, 32, 3097-3108.	6.7	40
22	Predicting Thermal Quenching in Inorganic Phosphors. Chemistry of Materials, 2020, 32, 6256-6265.	6.7	64
23	Oxygen vacancies-rich Ce0.9Gd0.1O2-δ decorated Pr0.5Ba0.5CoO3-δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 266, 118656.	20.2	87
24	Data-Driven Discovery of Full-Visible-Spectrum Phosphor. Chemistry of Materials, 2019, 31, 6286-6294.	6.7	92
25	Water Contributes to Higher Energy Density and Cycling Stability of Prussian Blue Analogue Cathodes for Aqueous Sodium-Ion Batteries. Chemistry of Materials, 2019, 31, 5933-5942.	6.7	66
26	Stable Two-Dimensional Materials for Oxygen Reduction and Oxygen Evolution Reactions. ACS Energy Letters, 2019, 4, 1410-1411.	17.4	59
27	Mining Unexplored Chemistries for Phosphors for High-Color-Quality White-Light-Emitting Diodes. Joule, 2018, 2, 914-926.	24.0	97
28	Correction to Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study. ACS Applied Materials & Interfaces, 2018, 10, 10598-10598.	8.0	3
29	Probing Solid–Solid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations. Chemistry of Materials, 2018, 30, 163-173.	6.7	150
30	Deep neural networks for accurate predictions of crystal stability. Nature Communications, 2018, 9, 3800.	12.8	178
31	An integrated first principles and experimental investigation of the relationship between structural rigidity and quantum efficiency in phosphors for solid state lighting. Journal of Luminescence, 2016, 179, 297-305.	3.1	24
32	Electronic Structure Descriptor for the Discovery of Narrow-Band Red-Emitting Phosphors. Chemistry of Materials, 2016, 28, 4024-4031.	6.7	78
33	Elucidating Structure–Composition–Property Relationships of the β-SiAlON:Eu ²⁺ Phosphor. Chemistry of Materials, 2016, 28, 8622-8630.	6.7	50
34	Insights into the Performance Limits of the Li ₇ P ₃ S ₁₁ Superionic Conductor: A Combined First-Principles and Experimental Study. ACS Applied Materials & Interfaces, 2016, 8, 7843-7853.	8.0	169
35	Analysing oxygen reduction electrocatalysis on transition metal doped niobium oxide(110). Physical Chemistry Chemical Physics, 0, , .	2.8	2