
Adelina M Voutchkova-Kostal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753709/publications.pdf Version: 2024-02-01

Adelina M

#	Article	IF	CITATIONS
1	Women in Green Chemistry and Engineering: Agents of Change Toward the Achievement of a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2022, 10, 2859-2862.	3.2	3
2	Electronic Effects of Support Doping on Hydrotalcite-Supported Iridium N-Heterocyclic Carbene Complexes. ACS Omega, 2022, 7, 24705-24713.	1.6	1
3	Green Chemistry: A Framework for a Sustainable Future. Organometallics, 2021, 40, 1801-1805.	1.1	4
4	Green Chemistry: A Framework for a Sustainable Future. Organic Letters, 2021, 23, 4935-4939.	2.4	6
5	Green Chemistry: A Framework for a Sustainable Future. Environmental Science & Technology, 2021, 55, 8459-8463.	4.6	12
6	Green Chemistry: A Framework for a Sustainable Future. Organic Process Research and Development, 2021, 25, 1455-1459.	1.3	18
7	Green Chemistry: A Framework for a Sustainable Future. Journal of Organic Chemistry, 2021, 86, 8551-8555.	1.7	4
8	Green Chemistry: A Framework for a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 8336-8340.	3.2	2
9	Green Chemistry: A Framework for a Sustainable Future. Environmental Science and Technology Letters, 2021, 8, 487-491.	3.9	7
10	Green Chemistry: A Framework for a Sustainable Future. Industrial & Engineering Chemistry Research, 2021, 60, 8964-8968.	1.8	3
11	Green Chemistry: A Framework for a Sustainable Future. ACS Omega, 2021, 6, 16254-16258.	1.6	7
12	Multifunctional Catalysts for Direct Conversion of Alcohols to Long-Chain Hydrocarbons via Deoxygenative Olefination. ACS Sustainable Chemistry and Engineering, 2021, 9, 14657-14662.	3.2	2
13	Microwaveâ€Assisted Decarbonylation of Biomassâ€Derived Aldehydes using Pdâ€Doped Hydrotalcites. ChemSusChem, 2020, 13, 312-320.	3.6	21
14	CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chemical Research in Toxicology, 2020, 33, 426-435.	1.7	8
15	Decarbonylative Olefination of Aldehydes to Alkenes. Journal of the American Chemical Society, 2020, 142, 696-699.	6.6	17
16	Toward Less Hazardous Industrial Compounds: Coupling Quantum Mechanical Computations, Biomarker Responses, and Behavioral Profiles To Identify Bioactivity of SN2 Electrophiles in Alternative Vertebrate Models. Chemical Research in Toxicology, 2020, 33, 367-380.	1.7	8
17	Electronic Support Effects of Tunable Mixed Metal Oxides on Immobilized Palladium Nâ€Heterocyclic Carbene Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 2766-2766.	1.0	0
18	Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbene catalysts. Green Chemistry, 2020, 22, 6093-6104.	4.6	29

ADELINA M

#	Article	IF	CITATIONS
19	Transfer hydrogenation of levulinic acid from glycerol and ethanol using water-soluble iridium N-heterocyclic carbene complexes. Journal of Organometallic Chemistry, 2020, 919, 121310.	0.8	13
20	Going All In: A Strategic Investment in <i>In Silico</i> Toxicology. Chemical Research in Toxicology, 2020, 33, 880-888.	1.7	21
21	<i>ACS Sustainable Chemistry & Engineering</i> Virtual Special Issue on Hydrogen Transfer Strategies for Biomass Valorization. ACS Sustainable Chemistry and Engineering, 2019, 7, 16935-16936.	3.2	2
22	Kinetics of Glutathione Depletion and Antioxidant Gene Expression as Indicators of Chemical Modes of Action Assessed <i>in Vitro</i> in Mouse Hepatocytes with Enhanced Glutathione Synthesis. Chemical Research in Toxicology, 2019, 32, 421-436.	1.7	8
23	Acceptorless Amine Dehydrogenation and Transamination Using Pd-Doped Hydrotalcites. ACS Catalysis, 2019, 9, 1055-1065.	5.5	37
24	Continuous synthesis of doped layered double hydroxides in a meso-scale flow reactor. Chemical Engineering Journal, 2019, 360, 190-199.	6.6	17
25	Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid. Organometallics, 2018, 37, 1400-1409.	1.1	46
26	The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. Green Chemistry Letters and Reviews, 2018, 11, 103-110.	2.1	32
27	The Molecular Design Research Network. Toxicological Sciences, 2018, 161, 241-248.	1.4	17
28	Transfer hydrogenation of carbon dioxide and bicarbonate from glycerol under aqueous conditions. Chemical Communications, 2018, 54, 6184-6187.	2.2	30
29	Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. Science of the Total Environment, 2018, 640-641, 1587-1600.	3.9	49
30	Electronic Support Effects of Tunable Mixed Metal Oxides on Immobilized Palladium N-Heterocyclic Carbene Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 2471-2479.	1.0	3
31	Transfer Hydrogenation from Glycerol: Activity and Recyclability of Iridium and Ruthenium Sulfonate-Functionalized N-Heterocyclic Carbene Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 3963-3972.	3.2	51
32	Toward the Design of Less Hazardous Chemicals: Exploring Comparative Oxidative Stress in Two Common Animal Models. Chemical Research in Toxicology, 2017, 30, 893-904.	1.7	26
33	Predicting skin permeation rate from nuclear magnetic resonance spectra. Green Chemistry, 2016, 18, 4468-4474.	4.6	1
34	Current Status and Future Challenges in Molecular Design for Reduced Hazard. ACS Sustainable Chemistry and Engineering, 2016, 4, 5900-5906.	3.2	35
35	Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chemistry, 2016, 18, 4432-4445.	4.6	99
36	CADRE-SS, an <i>in Silico</i> Tool for Predicting Skin Sensitization Potential Based on Modeling of Molecular Interactions. Chemical Research in Toxicology, 2016, 29, 58-64.	1.7	35

Adelina M

#	Article	IF	CITATIONS
37	Identifying and designing chemicals with minimal acute aquatic toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6289-6294.	3.3	75
38	Immobilization of imidazolium ionic liquids on hydrotalcites using silane linkers: retardation of memory effect. RSC Advances, 2015, 5, 13016-13020.	1.7	10
39	Recyclable hydrotalcite catalysts for alcohol imination via acceptorless dehydrogenation. Green Chemistry, 2015, 17, 2271-2280.	4.6	37
40	Reducing aquatic hazards of industrial chemicals: Probabilistic assessment of sustainable molecular design guidelines. Environmental Toxicology and Chemistry, 2014, 33, 1894-1902.	2.2	21
41	Global Model for Octanolâ€Water Partition Coefficients from Proton Nuclear Magnetic Resonance Spectra. Molecular Informatics, 2014, 33, 286-292.	1.4	6
42	A Free Energy Approach to the Prediction of Olefin and Epoxide Mutagenicity and Carcinogenicity. Chemical Research in Toxicology, 2012, 25, 2780-2787.	1.7	18
43	Towards rational molecular design for reduced chronic aquatic toxicity. Green Chemistry, 2012, 14, 1001.	4.6	52