List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 547, 93-98.	2.6	214
2	Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3073-3078.	2.6	201
3	Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites. Journal of Alloys and Compounds, 2010, 504, 542-547.	2.8	156
4	Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties. Scientific Reports, 2016, 6, 38824.	1.6	154
5	Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion. Acta Materialia, 2018, 151, 260-270.	3.8	143
6	Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1931-1947.	1.1	135
7	Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5278-5282.	2.6	122
8	Dynamic microstructural changes during hot extrusion and mechanical properties of a Mg–5.0 Zn–0.9 Y–0.16 Zr (wt.%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4055-4067.	2.6	121
9	A study of damping capacities in pure Mg and Mg–Ni alloys. Scripta Materialia, 2005, 52, 1141-1145.	2.6	118
10	Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 264-269.	2.6	112
11	The microstructure, texture and mechanical properties of extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 164-171.	2.6	112
12	Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys. Materials and Design, 2016, 98, 285-293.	3.3	110
13	Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. Scientific Reports, 2017, 7, 40846.	1.6	110
14	Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 318, 50-56.	2.6	107
15	Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. Journal of Alloys and Compounds, 2011, 509, 8664-8669.	2.8	106
16	Processing maps for hot working of ZK60 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 464, 52-58.	2.6	104
17	Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. Journal of Alloys and Compounds, 2012, 524, 46-52.	2.8	101
18	Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 543, 249-256.	2.6	100

#	Article	IF	CITATIONS
19	Improving strength and ductility of Mg–Gd–Y–Zn–Zr alloy simultaneously via extrusion, hot rolling and ageing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 643, 137-141.	2.6	100
20	Effect of Mn addition on microstructure, texture and mechanical properties of Mg–Zn–Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3741-3747.	2.6	98
21	Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4250-4256.	2.6	97
22	Effect of Ca/Al ratio on microstructure and mechanical properties of Mg-Al-Ca-Mn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 423-432.	2.6	96
23	Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 540, 123-129.	2.6	95
24	Texture evolution of the Mg/Al laminated composite fabricated by the accumulative roll bonding. Scripta Materialia, 2009, 61, 717-720.	2.6	93
25	Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. Journal of Alloys and Compounds, 2012, 512, 355-360.	2.8	93
26	Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM. Composites Science and Technology, 2007, 67, 2253-2260.	3.8	90
27	Microstructure and tensile property of the ECAPed pure magnesium. Journal of Alloys and Compounds, 2009, 470, 256-262.	2.8	89
28	Development of high-strength, low-cost wrought Mg–2.5mass% Zn alloy through micro-alloying with Ca and La. Materials and Design, 2015, 85, 549-557.	3.3	86
29	Low frequency damping capacities and mechanical properties of Mg–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 374-379.	2.6	81
30	Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance. Materials Letters, 2005, 59, 1727-1731.	1.3	79
31	Ultrahigh strength as-extruded Mg–10.3Zn–6.4Y–0.4Zr–0.5Ca alloy containing W phase. Materials and Design, 2016, 108, 391-399.	3.3	79
32	Microstructure and mechanical properties of WE43 magnesium alloy fabricated by direct-chill casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 158-164.	2.6	79
33	Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1630-1635.	2.6	78
34	Thermal conductivity of as-cast and as-extruded binary Mg–Al alloys. Journal of Alloys and Compounds, 2014, 608, 19-24.	2.8	78
35	Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 348, 67-75.	2.6	77
36	Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 465, 78-84.	2.6	77

#	Article	IF	CITATIONS
37	Microstructure and mechanical properties of Mg–Zn–Ca alloy processed by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 289-294.	2.6	74
38	Improved mechanical property and internal friction of pure Mg processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 588-594.	2.6	74
39	Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg–Zn–Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 569, 48-53.	2.6	74
40	Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50Zn-1.13Ca (wt%) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 6-13.	2.6	74
41	Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates. Scientific Reports, 2017, 7, 43391.	1.6	72
42	Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8709-8714.	2.6	70
43	Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys. Acta Materialia, 2014, 80, 288-295.	3.8	70
44	Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP). Materials Characterization, 2016, 121, 222-230.	1.9	70
45	Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents. Journal of Alloys and Compounds, 2019, 792, 130-141.	2.8	70
46	Effect of ageing treatment on the precipitation behaviour of Mg–Gd–Y–Zn–Zr alloy. Journal of Alloys and Compounds, 2013, 550, 50-56.	2.8	69
47	Thermal conductivity of as-cast and as-extruded binary Mg–Zn alloys. Journal of Alloys and Compounds, 2015, 621, 250-255.	2.8	69
48	Microstructure and mechanical properties of SiCp/AZ91 composite deformed through a combination of forging and extrusion process. Materials & Design, 2010, 31, 3929-3932.	5.1	68
49	Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 624, 157-168.	2.6	68
50	Exceptional high-strain-rate superplasticity in Mg–Gd–Y–Zn–Zr alloy with long-period stacking ordered phase. Scripta Materialia, 2013, 69, 801-804.	2.6	67
51	Achieving ultra-high hardness of nanostructured Mg-8.2Gd-3.2Y-1.0Zn-0.4Zr alloy produced by a combination of high pressure torsion and ageing treatment. Scripta Materialia, 2018, 155, 21-25.	2.6	65
52	The effect of thermal exposure on the interface and mechanical properties of Al18B4O33w/AZ91 magnesium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 372, 66-74.	2.6	63
53	Dynamic recrystallization behavior of particle reinforced Mg matrix composites fabricated by stir casting. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 545, 38-43.	2.6	63
54	Influence of rolling temperature on the microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 615-622.	2.6	63

#	Article	IF	CITATIONS
55	Effect of heat treatment on the stability of damping capacity in hypoeutectic Mg–Si alloy. Scripta Materialia, 2006, 54, 1639-1643.	2.6	62
56	Effect of submicron size SiC particles on microstructure and mechanical properties of AZ31B magnesium matrix composites. Materials & Design, 2014, 54, 436-442.	5.1	62
57	Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 95-106.	2.6	62
58	Microstructure and mechanical properties of the Mg–Gd–Y–Zn–Zr alloy fabricated by semi-continuous casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 128-135.	2.6	61
59	Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites. Materials & Design, 2013, 52, 1011-1017.	5.1	61
60	Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 364-370.	2.6	61
61	Effect of extrusion parameters on microstructure and mechanical properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 159-167.	2.6	61
62	Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 491-500.	2.6	61
63	Ultra-fine grained Mg-Zn-Ca-Mn alloy with simultaneously improved strength and ductility processed by equal channel angular pressing. Journal of Alloys and Compounds, 2019, 785, 410-421.	2.8	61
64	Distribution and integrity of carbon nanotubes in carbon nanotube/magnesium composites. Journal of Alloys and Compounds, 2014, 612, 330-336.	2.8	60
65	Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy. Materials Characterization, 2015, 104, 66-72.	1.9	60
66	Dynamic recrystallization behavior during hot deformation and mechanical properties of 0.2μm SiCp reinforced Mg matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 824-830.	2.6	59
67	Microstructure and mechanical properties of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr supersaturated solid solution prepared by high pressure torsion. Materials and Design, 2017, 135, 366-376.	3.3	59
68	Exceptional grain refinement in a Mg alloy during high pressure torsion due to rare earth containing nanosized precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 115-123.	2.6	59
69	Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites. Composites Science and Technology, 2015, 118, 85-93.	3.8	58
70	The effect of double extrusion on the microstructure and mechanical properties of Mg–Zn–Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 69-77.	2.6	56
71	Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite. Materials & Design, 2014, 58, 204-208.	5.1	55
72	Hot compression deformation behavior of Mg-9Gd-2.9Y-1.9Zn-0.4Zr-0.2Ca (wt%) alloy. Materials Characterization, 2017, 124, 40-49.	1.9	55

#	Article	IF	CITATIONS
73	Effect of ageing treatment on the microstructure, texture and mechanical properties of extruded Mg–8.2Gd–3.8Y–1Zn–0.4Zr (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 112-117.	2.6	54
74	Superplasticity of Mg–Zn–Y alloy containing quasicrystal phase processed by equal channel angular pressing. Materials Letters, 2007, 61, 4406-4408.	1.3	53
75	Microstructures and mechanical properties of AZ91 magnesium alloy processed by multidirectional forging under decreasing temperature conditions. Journal of Alloys and Compounds, 2014, 617, 979-987.	2.8	53
76	Influences of extrusion parameters on microstructure and mechanical properties of particulate reinforced magnesium matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6387-6392.	2.6	51
77	Microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets processed by combined processes of extrusion, hot rolling and ageing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 844-851.	2.6	51
78	Reducing the tension–compression yield asymmetry of extruded Mg–Zn–Ca alloy via equal channel angular pressing. Journal of Magnesium and Alloys, 2015, 3, 302-308.	5.5	51
79	Improving microstructure and mechanical properties in Mg–6 mass% Zn alloys by combined addition of Ca and Ce. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 67-74.	2.6	51
80	Isothermal forging of AZ91 reinforced with 10vol.% silicon carbon particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1707-1712.	2.6	50
81	Fabrication of bimodal size SiCp reinforced AZ31B magnesium matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 601, 58-64.	2.6	50
82	Formation of long-period stacking ordered phase only within grains in Mg–Gd–Y–Zn–Zr casting by friction stir processing. Journal of Alloys and Compounds, 2013, 581, 585-589.	2.8	49
83	Effect of final rolling reduction on the microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 232-240.	2.6	49
84	Tension-compression asymmetry of extruded Mg-Gd-Y-Zr alloy with a bimodal microstructure studied by in-situ synchrotron diffraction. Materials and Design, 2019, 170, 107705.	3.3	49
85	Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites. Materials Letters, 2002, 57, 558-564.	1.3	48
86	Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing. Journal of Magnesium and Alloys, 2020, , .	5.5	48
87	Compressive deformation of Mg–Zn–Y–Zr alloy processed by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 564-567.	2.6	47
88	Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy. Journal of Materials Science and Technology, 2022, 99, 223-238.	5.6	45
89	Microstructure and mechanical property of the ECAPed Mg2Si/Mg composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 516, 283-289.	2.6	44
90	Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP. Transactions of Nonferrous Metals Society of China, 2010, 20, s604-s607.	1.7	44

#	Article	IF	CITATIONS
91	Microstructure and mechanical properties of the accumulative roll bonded (ARBed) pure magnesium sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7176-7183.	2.6	43
92	Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Materials & Design, 2012, 36, 199-205.	5.1	43
93	Microstructures and mechanical properties of SiCp/AZ91 magnesium matrix nanocomposites processed by multidirectional forging. Journal of Alloys and Compounds, 2015, 622, 1018-1026.	2.8	43
94	Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6816-6821.	2.6	42
95	Evolution of microstructure, texture and mechanical properties of SiC/AZ31 nanocomposite during hot rolling process. Materials and Design, 2016, 93, 194-202.	3.3	42
96	Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion. Journal of Materials Science and Technology, 2018, 34, 277-283.	5.6	42
97	In-situ quasicrystal-reinforced magnesium matrix composite processed by equal channel angular extrusion (ECAE). Journal of Materials Science, 2005, 40, 2587-2590.	1.7	41
98	Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg–4Al magnesium alloys. Journal of Alloys and Compounds, 2019, 806, 71-78.	2.8	40
99	Hot extrusion of SiCp/AZ91 Mg matrix composites. Transactions of Nonferrous Metals Society of China, 2012, 22, 1912-1917.	1.7	39
100	Effect of La addition on the microstructure and mechanical properties of Mg–6 wt% Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 47-54.	2.6	39
101	The interfacial characteristic of SiCp/AZ91 magnesium matrix composites fabricated by stir casting. Journal of Materials Science, 2009, 44, 2759-2764.	1.7	38
102	Multidirectional forging of magnesium matrix composites: Effect on microstructures and tensile properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7364-7368.	2.6	38
103	Microstructure and mechanical properties of rolled sheets of Mg–Gd–Y–Zn–Zr alloy: As-cast versus as-homogenized. Journal of Alloys and Compounds, 2012, 528, 40-44.	2.8	38
104	Internal friction and microplastic deformation behavior of pure magnesium processed by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 100-108.	2.6	38
105	Intermetallics formed at interface of ultrafine grained Al/Mg bi-layered disks processed by high pressure torsion at room temperature. Materials Letters, 2016, 181, 187-190.	1.3	38
106	Evolution of long-period stacking ordered structure and hardness of Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy during processing by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 238-252.	2.6	38
107	Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases. Journal of Materials Science and Technology, 2020, 45, 117-124.	5.6	38
108	Achieving an ultra-high strength and moderate ductility in Mg–Gd–Y–Zn–Zr alloy via a decreased-temperature multi-directional forging. Materials Characterization, 2021, 171, 110804.	1.9	38

#	Article	IF	CITATIONS
109	Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella. Journal of Materials Science and Technology, 2021, 73, 66-75.	5.6	38
110	Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles. Materials & Design, 2010, 31, 4862-4865.	5.1	37
111	Microstructure and elevated tensile properties of submicron SiCp/AZ91 magnesium matrix composite. Materials & Design, 2012, 38, 110-114.	5.1	37
112	Hot deformation behavior of SiCp/AZ91 magnesium matrix composite fabricated by stir casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 481-485.	2.6	36
113	Microstructure and mechanical properties of SiCp/MgZnCa composites fabricated by stir casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 60-67.	2.6	36
114	The microstructural evolution and superplastic behavior at low temperatures of Mg–5.00Zn–0.92Y–0.16Zr (wt.%) alloys after hot extrusion and ECAP process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 60-68.	2.6	36
115	Effect of trace zinc on the microstructure and mechanical properties of extruded Mg-Gd-Y-Zr alloy. Journal of Alloys and Compounds, 2019, 789, 416-427.	2.8	36
116	High strength and excellent ductility of dilute Mg-0.68Al-0.32Ca-0.50Mn (wt%) extrusion alloy obtained by T6 treatment. Materials Characterization, 2020, 162, 110197.	1.9	36
117	Effects of reinforcement phases in magnesium matrix composites on microarc discharge behavior and characteristics of microarc oxidation coatings. Surface and Coatings Technology, 2006, 201, 353-360.	2.2	35
118	Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 447, 227-232.	2.6	35
119	Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite. Journal of Alloys and Compounds, 2010, 506, 688-692.	2.8	35
120	Effect of multidirectional forging on microstructures and tensile properties of a particulate reinforced magnesium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7133-7139.	2.6	35
121	Evolution of microstructure and mechanical properties of an as-cast Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 312-320.	2.6	34
122	Effect of ultrasonic vibration and solution heat treatment on microstructures and tensile properties of AZ91 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7484-7487.	2.6	33
123	Effect of heat treatment on internal friction in ECAP processed commercial pure Mg. Journal of Alloys and Compounds, 2013, 549, 38-45.	2.8	33
124	Comparison of microstructure and mechanical properties of Mg-Zn microalloyed with Ca or Ce. Vacuum, 2018, 151, 221-225.	1.6	32
125	Enhanced strength by precipitate modification in wrought Mg–Al–Ca alloy with trace Mn addition. Journal of Alloys and Compounds, 2020, 836, 154689.	2.8	31
126	Fabrication of SiC particles-reinforced magnesium matrix composite by ultrasonic vibration. Journal of Materials Science, 2012, 47, 138-144.	1.7	28

#	Article	IF	CITATIONS
127	Interfacial reaction in squeeze cast SICW/AZ91 magnesium alloy composite. Scripta Materialia, 1996, 35, 529-534.	2.6	27
128	Microstructure and mechanical properties of Mg–Zn–Ca–Ce alloy processed by semi-continuous casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 134-139.	2.6	27
129	Study on distribution of long-period stacking ordered phase in Mg–Gd–Y–Zn–Zr alloy using friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 275-285.	2.6	27
130	In vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal. Science China Materials, 2018, 61, 619-628.	3.5	27
131	Microstructure evolutions of SiCp/AZ91 Mg matrix composites during hot compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 139-146.	2.6	26
132	Hot deformation and processing maps of Al18B4O33w/ZK60 composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 477, 179-184.	2.6	25
133	Microstructure and texture evolution of deformed Mg-Zn alloy during recrystallization. Materials Characterization, 2018, 145, 501-506.	1.9	24
134	Characterization of interfacial reaction in squeeze cast SiCw/Mg composites. Materials Letters, 2001, 47, 118-124.	1.3	23
135	Microstructure and tensile properties of SiC nanoparticles reinforced magnesium matrix composite prepared by multidirectional forging under decreasing temperature conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 465-473.	2.6	23
136	Hot deformation behavior of Al18B4O33w/ZK60 magnesium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 495-498.	2.6	22
137	Damping behavior and mechanical properties of Mg-Cu-Mn alloy processed by equal channel angular pressing. Transactions of Nonferrous Metals Society of China, 2008, 18, s33-s38.	1.7	22
138	Microstructure and room temperature tensile properties of 1Âμm-SiCp/AZ31B magnesium matrix composite. Journal of Magnesium and Alloys, 2015, 3, 155-161.	5.5	22
139	Development of high-performance Mg–Zn–Ca–Mn alloy via an extrusion process at relatively low temperature. Journal of Alloys and Compounds, 2020, 825, 153942.	2.8	22
140	Influence of secondary extrusion on microstructures and mechanical properties of ZK60 Mg alloy processed by extrusion and ECAP. Transactions of Nonferrous Metals Society of China, 2012, 22, 1896-1901.	1.7	21
141	Processing, Microstructure and Mechanical Properties of Ti6Al4V Particles-Reinforced Mg Matrix Composites. Acta Metallurgica Sinica (English Letters), 2016, 29, 940-950.	1.5	21
142	Effects of hot rolling on microstructure, macrotexture and mechanical properties of pre-extruded AZ31/SiC nanocomposite sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 15-23.	2.6	21
143	Room-temperature compressive deformation behavior of Mg–Zn–Ca alloy processed by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 672-679.	2.6	20
144	Improved strength in wrought Mg–Y–Ni alloys by adjusting the block-shaped LPSO phase and plate-shaped γ′ phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142198.	2.6	20

#	Article	IF	CITATIONS
145	Role of extrusion rate on the microstructure and tensile properties evolution of ultrahigh-strength low-alloy Mg-1.0Al-1.0Ca-0.4Mn (wt.%) alloy. Journal of Magnesium and Alloys, 2023, 11, 553-561.	5.5	19
146	Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7873-7877.	2.6	18
147	The partial substitution of Y with Gd on microstructures and mechanical properties of as-cast and as-extruded Mg-10Zn-6Y-0.5Zr alloy. Materials Characterization, 2018, 135, 96-103.	1.9	18
148	Effect of nano-precipitation on thermal conductivity and mechanical properties of Mg-2Mn-xLa alloys during hot extrusion. Journal of Alloys and Compounds, 2020, 830, 154570.	2.8	18
149	Exceptional thermal stability and enhanced hardness in a nanostructured Mg-Gd-Y-Zn-Zr alloy processed by high pressure torsion. Journal of Magnesium and Alloys, 2023, 11, 4589-4602.	5.5	16
150	Texture Evolution of the Mg/Al Laminated Composite by Accumulative Roll Bonding at Ambient Temperature. Rare Metal Materials and Engineering, 2013, 42, 441-446.	0.8	15
151	Crystallographic orientation relationship between SiCw and Mg in squeeze-cast SiCw/Mg composites. Journal of Materials Science Letters, 1999, 18, 1301-1303.	0.5	14
152	Squeeze cast Al18B4O33 whisker-reinforced magnesium matrix composite. Journal of Materials Science Letters, 2002, 21, 533-535.	0.5	13
153	Mechanical spectroscopy of Al-Mg alloys. Physics of Metals and Metallography, 2013, 114, 327-338.	0.3	13
154	Effect of aging treatment on the microstructure, fracture toughness and fracture behavior of the extruded Mg-7Gd-2Y–1Zn-0.5Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143514.	2.6	13
155	Low frequency damping capacities of commercial pure magnesium. Transactions of Nonferrous Metals Society of China, 2012, 22, 1907-1911.	1.7	12
156	Interfacial bond between SiCw and Mg in squeeze cast SiCw/Mg composites. Materials Letters, 1999, 41, 57-62.	1.3	11
157	Effect of small tensile deformation on damping capacities of Mg-1%Al alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s444-s447.	1.7	11
158	Influence of grain size on microstructure, mechanical properties and strain hardening behavior of Mg-0.3Ca (wt.%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142847.	2.6	10
159	Deformation-Induced Dynamic Precipitation and Resulting Microstructure in a Mg–Zn–Ca Alloy. Jom, 2018, 70, 1611-1615.	0.9	8
160	The origin of discontinuous yielding in Mg alloys under slip-dominated condition studied by in-situ synchrotron diffraction and elastic-viscoplastic self-consistent modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 562-568.	2.6	8
161	Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging. Acta Metallurgica Sinica (English Letters), 2021, 34, 265-277.	1.5	8
162	Compressive deformation behavior of Mg–Zn–Ca alloy at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 71-77.	2.6	7

#	Article	IF	CITATIONS
163	Microstructure and mechanical properties of magnesium matrix composite reinforced with carbon nanotubes by ultrasonic vibration. Rare Metals, 2015, , 1.	3.6	7
164	Enhancing the Strength and Ductility in Mg–Zn–Ce Alloy through Achieving High Density Precipitates and Texture Weakening. Advanced Engineering Materials, 2017, 19, 1700487.	1.6	7
165	Precipitates in aged SiCw/AZ91 magnesium matrix composite. Journal of Materials Science Letters, 1997, 16, 1106-1108.	0.5	5
166	Title is missing!. Journal of Materials Science Letters, 2001, 20, 1501-1503.	0.5	5
167	LOW-FREQUENCY DAMPING BEHAVIOR OF PURE MG PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING. International Journal of Modern Physics B, 2009, 23, 1829-1834.	1.0	5
168	Microstructure modification and resultant mechanical properties of Mg–6Zn–1.5Ca (wt%) alloy through hot extrusion. Journal of Materials Research, 2018, 33, 1003-1010.	1.2	5
169	Effect of grain size on cyclic microplasticity of ECAP processed commercial pure magnesium. Journal of Materials Science, 2013, 48, 1239-1248.	1.7	4
170	Strength and Ductility Balance on an Extruded Mg–Zn–Ca–La Alloy. Advanced Engineering Materials, 2017, 19, 1600842.	1.6	4
171	Texture and Lattice Strain Evolution during Tensile Loading of Mg–Zn Alloys Measured by Synchrotron Diffraction. Metals, 2020, 10, 124.	1.0	4
172	Microstructure and Mechanical Properties of Extruded Mg-Zn-Ca Alloy. Materials Science Forum, 2010, 654-656, 703-706.	0.3	3
173	Microstructure and Properties of Pure Mg/ZK60 Laminate Processed by Accumulative Roll Bonding. Materials Science Forum, 0, 650, 343-346.	0.3	3
174	In-situ synchrotron diffraction study on compressive deformation behavior of Mg92Y5Ni3 alloy mostly composed of LPSO. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143292.	2.6	3
175	Development of Extrusion and Rolling Textures during ECAP of Mg-Alloys. Materials Science Forum, 0, 584-586, 748-753.	0.3	2
176	Texture development of ARB processed Mg/Al multilayers. Journal of Physics: Conference Series, 2010, 240, 012125.	0.3	2
177	Effect of Texture on Damping Behaviour in an AZ80 Alloy. Solid State Phenomena, 2010, 160, 117-121.	0.3	2
178	Texture Gradient in a Single Pass ECAPed Pure Mg by Neutron Radiation. Materials Science Forum, 0, 584-586, 513-517.	0.3	1
179	Textures in Multi-Directional Forged Mg by Neutron Diffraction. Advanced Materials Research, 0, 146-147, 879-882.	0.3	1
180	Development of Ultra-High Strength and Ductile Mg–Gd–Y–Zn–Zr Alloys by Extrusion with Forced Air Cooling. Minerals, Metals and Materials Series, 2017, , 23-28.	0.3	1

#	Article	IF	CITATIONS
181	Compressive Behavior of Ultrafine-Grained Mg-Zn-Y-Zr Alloy Containing Quasicrystalline Phase. Materials Science Forum, 2008, 584-586, 287-292.	0.3	0
182	Anisotropy in tensile behavior of an extruded Mg-4.50Zn-1.13Ca (wt.%) alloy. International Journal of Materials Research, 2021, 112, 787-793.	0.1	0