Terence L Marsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753446/publications.pdf

Version: 2024-02-01

54 papers

3,627 citations

201674 27 h-index 54 g-index

55 all docs 55 docs citations

55 times ranked 4917 citing authors

#	Article	IF	CITATIONS
1	Changes in Lake Sturgeon Gut Microbiomes Relative to Founding Origin and in Response to Chemotherapeutant Treatments. Microorganisms, 2022, 10, 1005.	3.6	3
2	Effects of Water Filtration and Temperature on Microbial Colonization and Survival of Lake Sturgeon Eggs. North American Journal of Aquaculture, 2021, 83, 26-37.	1.4	5
3	Watershed-scale landuse is associated with temporal and spatial compositional variation in Lake Michigan tributary bacterial communities. Journal of Great Lakes Research, 2021, 47, 862-874.	1.9	2
4	Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp International Journal of Molecular Sciences, 2021, 22, 7385.	4.1	5
5	Shedding of the Salmonid Herpesvirus-3 by Infected Lake Trout (Salvelinus namaycush). Viruses, 2019, 11, 580.	3.3	2
6	Effect of dietary prebiotics and probiotics on snakehead (Channa striata) health: Haematology and disease resistance parameters against Aeromonas hydrophila. Fish and Shellfish Immunology, 2018, 75, 99-108.	3.6	54
7	Development of the Tonsil Microbiome in Pigs and Effects of Stress on the Microbiome. Frontiers in Veterinary Science, 2018, 5, 220.	2.2	13
8	Development of the tonsillar microbiome in pigs from newborn through weaning. BMC Microbiology, 2018, 18, 35.	3.3	25
9	Analysing the effect of dietary prebiotics and probiotics on gut bacterial richness and diversity of Asian snakehead fingerlings using T-RFLP method. Aquaculture Research, 2018, 49, 3350-3361.	1.8	10
10	Biodegradation of Poly(lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation. Journal of Polymers and the Environment, 2018, 26, 3848-3857.	5.0	65
11	Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channa striata) fingerlings. Aquaculture, 2016, 460, 59-68.	3.5	81
12	Effects of Family, Feeding Frequency, and Alternate Food Type on Body Size and Survival of Hatcheryâ€Produced and Wild aught Lake Sturgeon Larvae. North American Journal of Aquaculture, 2016, 78, 136-144.	1.4	19
13	Phylogenetic Analysis of Anaerobic Co-Digestion of Animal Manure and Corn Stover Reveals Linkages between Bacterial Communities and Digestion Performance. Advances in Microbiology, 2016, 06, 879-897.	0.6	8
14	Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome, 2015, 3, 45.	11.1	151
15	Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria. PLoS ONE, 2015, 10, e0123999.	2.5	98
16	Analysis of bacterial communities associated with the benthic amphipod <i>Diporeia</i> hin the Laurentian Great Lakes Basin. Canadian Journal of Microbiology, 2015, 61, 72-81.	1.7	10
17	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	3.1	24
18	Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing. Frontiers of Environmental Science and Engineering, 2015, 9, 453-464.	6.0	22

#	Article	IF	CITATIONS
19	Intraâ€aggregate Pore Structure Influences Phylogenetic Composition of Bacterial Community in Macroaggregates. Soil Science Society of America Journal, 2014, 78, 1924-1939.	2.2	69
20	Analysis of Microbial Communities with Denaturing Gradient Gel Electrophoresis and Terminal Restriction Fragment Length Polymorphism., 2014,, 909-923.		3
21	Molecular characterization of bacterial communities associated with sediments in the Laurentian Great Lakes. Journal of Great Lakes Research, 2014, 40, 640-645.	1.9	14
22	Microbial Community Assembly and Succession on Lake Sturgeon Egg Surfaces as a Function of Simulated Spawning Stream Flow Rate. Microbial Ecology, 2013, 66, 500-511.	2.8	29
23	Defining the "core microbiome" of the microbial communities in the tonsils of healthy pigs. BMC Microbiology, 2012, 12, 20.	3.3	74
24	Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiology, 2012, 12, 21.	3.3	84
25	Heterogeneity of bacterial communities within the zebra mussel (Dreissena polymorpha) in the Laurentian Great Lakes Basin. Journal of Great Lakes Research, 2011, 37, 318-324.	1.9	23
26	Microbial communities in the tonsils of healthy pigs. Veterinary Microbiology, 2011, 147, 346-357.	1.9	63
27	Use of primer selection and restriction enzymes to assess bacterial community diversity in an agricultural soil used for potato production via terminal restriction fragment length polymorphism. Applied Microbiology and Biotechnology, 2011, 91, 1193-1202.	3.6	16
28	Dynamics of Microbial Community Composition and Function during In SituBioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5063-5063.	3.1	4
29	Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 3860-3869.	3.1	51
30	Fecal bacterial diversity of humanâ€habituated wild chimpanzees (<i>Pan troglodytes) Tj ETQq0 0 0 rgBT /Overlo Primatology, 2010, 72, 566-574.</i>	ck 10 Tf 50 1.7	0 307 Td (scł 24
31	Responses of microbial community functional structures to pilot-scale uranium <i>in situ</i> bioremediation. ISME Journal, 2010, 4, 1060-1070.	9.8	98
32	Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach. Applied and Environmental Microbiology, 2010, 76, 6778-6786.	3.1	102
33	Biosequestration via cooperative binding of copper by <i>Ralstonia pickettii</i> . Environmental Technology (United Kingdom), 2010, 31, 1045-1060.	2.2	27
34	Bacterial Assemblages Associated with Zebra Mussel (<i>Dreissena polymorpha</i>) Populations in the Laurentian Great Lakes Basin (USA). Journal of Shellfish Research, 2010, 29, 985-987.	0.9	7
35	Uranium Transformations in Static Microcosms. Environmental Science & Environm	10.0	44
36	Bacterial and Archaeal Phylogenetic Diversity of a Cold Sulfur-Rich Spring on the Shoreline of Lake Erie, Michigan. Applied and Environmental Microbiology, 2009, 75, 5025-5036.	3.1	28

#	Article	IF	Citations
37	Rearrangement of bacterial community structure during peat diagenesis. Soil Biology and Biochemistry, 2009, 41, 135-143.	8.8	6
38	Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME Journal, 2009, 3, 1004-1011.	9.8	342
39	GeoChipâ€based analysis of functional microbial communities during the reoxidation of a bioreduced uraniumâ€contaminated aquifer. Environmental Microbiology, 2009, 11, 2611-2626.	3.8	95
40	Predominance of Tetragenococcus halophilus as the cause of sugar thick juice degradation. Food Microbiology, 2008, 25, 413-421.	4.2	19
41	Speciation of Uranium in Sediments before and after In situ Biostimulation. Environmental Science & En	10.0	107
42	Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels. Applied and Environmental Microbiology, 2008, 74, 3718-3729.	3.1	154
43	Genetic and physiological diversity of Tetragenococcus halophilus strains isolated from sugar- and salt-rich environments. Microbiology (United Kingdom), 2008, 154, 2600-2610.	1.8	39
44	Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Biodegradation, 2006, 17, 303-316.	3.0	55
45	Colonization of the Cecal Mucosa by Helicobacter hepaticus Impacts the Diversity of the Indigenous Microbiota. Infection and Immunity, 2005, 73, 6952-6961.	2.2	72
46	Cultureâ€Independent Microbial Community Analysis with Terminal Restriction Fragment Length Polymorphism. Methods in Enzymology, 2005, 397, 308-329.	1.0	60
47	Characterization of the predominant anaerobic bacterium recovered from digital dermatitis lesions in three Michigan dairy cows. Anaerobe, 2003, 9, 151-155.	2.1	18
48	Effects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique. FEMS Microbiology Ecology, 2003, 46, 53-62.	2.7	72
49	Natural Biological Attenuation of Phenoxy Herbicides in Groundwater: Dow AgroSciences Paritutu Site, New Zealand. Bioremediation Journal, 2001, 5, 79-92.	2.0	11
50	Application of Denaturing Gradient Gel Electrophoresis (DGGE) To Study the Diversity of Marine Picoeukaryotic Assemblages and Comparison of DGGE with Other Molecular Techniques. Applied and Environmental Microbiology, 2001, 67, 2942-2951.	3.1	473
51	Terminal Restriction Fragment Length Polymorphism Analysis Program, a Web-Based Research Tool for Microbial Community Analysis. Applied and Environmental Microbiology, 2000, 66, 3616-3620.	3.1	272
52	Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Current Opinion in Microbiology, 1999, 2, 323-327.	5.1	369
53	Beginning a molecular analysis of the eukaryal community in activated sludge. Water Science and Technology, 1998, 37, 455-460.	2.5	38
54	Parallel and Divergent Genotypic Evolution in Experimental Populations of Ralstonia sp. Journal of Bacteriology, 1998, 180, 4325-4331.	2.2	51