
Leiliang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753442/publications.pdf Version: 2024-02-01

LEILIANC ZHANC

#	Article	IF	CITATIONS
1	Palmitoylation of SARSâ€CoVâ€2 S protein is critical for Sâ€mediated syncytia formation and virus entry. Journal of Medical Virology, 2022, 94, 342-348.	5.0	32
2	Gâ€quadruplex ligands inhibit chikungunya virus replication. Journal of Medical Virology, 2022, 94, 2519-2527.	5.0	9
3	The high expression of key components of inflammasome and pyroptosis might lead to severe COVIDâ€19 infection in cancer patients. Journal of Infection, 2022, 84, e19-e21.	3.3	2
4	Impact of non-pharmaceutical interventions during COVID-19 pandemic on pertussis, scarlet fever and hand-foot-mouth disease in China. Journal of Infection, 2022, 84, e13-e15.	3.3	11
5	Characterization of G-Quadruplexes in Enterovirus A71 Genome and Their Interaction with G-Quadruplex Ligands. Microbiology Spectrum, 2022, 10, e0046022.	3.0	6
6	Inhibition of endocytic recycling of ACE2 by SARS-CoV-2 S protein partially explains multiple COVID-19 related diseases caused by ACE2 reduction. Journal of Infection, 2022, 85, e21-e23.	3.3	5
7	Reduced incidence of acute pharyngitis and increased incidence of chornic pharyngitis under COVID-19 control strategy in Beijing. Journal of Infection, 2022, , .	3.3	0
8	The emerging roles of retromer and sorting nexins in the life cycle of viruses. Virologica Sinica, 2022, 37, 321-330.	3.0	7
9	Single-cell RNA sequencing analysis of liver reveals the enhanced entry and release abilities of human adenovirus F41, partially explaining acute hepatitis in children. Journal of Infection, 2022, 85, 334-363.	3.3	3
10	SNX27-mediated endocytic recycling of GLUT1 is suppressed by SARS-CoV-2 spike, possibly explaining neuromuscular disorders in patients with COVID-19. Journal of Infection, 2022, 85, e116-e118.	3.3	4
11	Targeting F13 from monkeypox virus and variola virus by tecovirimat: Molecular simulation analysis. Journal of Infection, 2022, 85, e99-e101.	3.3	24
12	ACE2 isoform diversity predicts the host susceptibility of SARS oVâ€2. Transboundary and Emerging Diseases, 2021, 68, 1026-1032.	3.0	13
13	Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors. Biochemical and Biophysical Research Communications, 2021, 538, 72-79.	2.1	39
14	Co-Immunization With CHIKV VLP and DNA Vaccines Induces a Promising Humoral Response in Mice. Frontiers in Immunology, 2021, 12, 655743.	4.8	9
15	The Impact of COVID-19 Interventions on Influenza and Mycobacterium Tuberculosis Infection. Frontiers in Public Health, 2021, 9, 672568.	2.7	7
16	The Rhinolophus affinis bat ACE2 and multiple animal orthologs are functional receptors for bat coronavirus RaTG13 and SARS-CoV-2. Science Bulletin, 2021, 66, 1215-1227.	9.0	24
17	Host proviral and antiviral factors for SARS-CoV-2. Virus Genes, 2021, 57, 475-488.	1.6	11
18	Low incidence rate of diarrhoea in COVID-19 patients is due to integrin. Journal of Infection, 2021, 83, 496-522.	3.3	6

#	Article	IF	CITATIONS
19	Progress on Poxvirus E3 Ubiquitin Ligases and Adaptor Proteins. Frontiers in Immunology, 2021, 12, 740223.	4.8	3
20	ACE2 partially dictates the host range and tropism of SARS-CoV-2. Computational and Structural Biotechnology Journal, 2020, 18, 4040-4047.	4.1	31
21	G-Quadruplexes Are Present in Human Coronaviruses Including SARS-CoV-2. Frontiers in Microbiology, 2020, 11, 567317.	3.5	42
22	DNA-Sensing Antiviral Innate Immunity in Poxvirus Infection. Frontiers in Immunology, 2020, 11, 1637.	4.8	17
23	Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 2020, 526, 165-169.	2.1	338
24	SARSâ€CoVâ€2 spike protein favors ACE2 from <i>Bovidae</i> and <i>Cricetidae</i> . Journal of Medical Virology, 2020, 92, 1649-1656.	5.0	129
25	Domain I of hepatitis C virus NS5A associates with ACBD3 in a genotypeâ€dependent manner. Microbiology and Immunology, 2020, 64, 574-577.	1.4	Ο
26	A potential inhibitory role for integrin in the receptor targeting of SARS-CoV-2. Journal of Infection, 2020, 81, 318-356.	3.3	35
27	Emerging Role for Acyl-CoA Binding Domain Containing 3 at Membrane Contact Sites During Viral Infection. Frontiers in Microbiology, 2020, 11, 608.	3.5	4
28	Social media WeChat infers the development trend of COVID-19. Journal of Infection, 2020, 81, e82-e83.	3.3	40
29	Key Components of Inflammasome and Pyroptosis Pathways Are Deficient in Canines and Felines, Possibly Affecting Their Response to SARS-CoV-2 Infection. Frontiers in Immunology, 2020, 11, 592622.	4.8	12
30	High level of defensin alpha 5 in intestine may explain the low incidence of diarrhoea in COVID-19 patients. European Journal of Gastroenterology and Hepatology, 2020, Publish Ahead of Print, e3-e4.	1.6	3
31	A highly efficient inÂvivo plasmid editing tool based on CRISPR-Cas12a and phage λ Red recombineering. Journal of Genetics and Genomics, 2019, 46, 455-458.	3.9	2
32	SR-BI Interactome Analysis Reveals a Proviral Role for UGGT1 in Hepatitis C Virus Entry. Frontiers in Microbiology, 2019, 10, 2043.	3.5	7
33	Elucidating the Host Interactome of EV-A71 2C Reveals Viral Dependency Factors. Frontiers in Microbiology, 2019, 10, 636.	3.5	4
34	Intraviral interactome of Chikungunya virus reveals the homo-oligomerization and palmitoylation of structural protein TF. Biochemical and Biophysical Research Communications, 2019, 513, 919-924.	2.1	4
35	Recent Progress in Vaccine Development Against Chikungunya Virus. Frontiers in Microbiology, 2019, 10, 2881.	3.5	49
36	Fatty Acid Synthase Promotes the Palmitoylation of Chikungunya Virus nsP1. Journal of Virology, 2019, 93, .	3.4	51

#	Article	lF	CITATIONS
37	<scp>COPII</scp> cargo claudinâ€12 promotes hepatitis C virus entry. Journal of Viral Hepatitis, 2019, 26, 308-312.	2.0	7
38	NAP1L1 Regulates Hepatitis C Virus Entry and Interacts with NS3. Virologica Sinica, 2018, 33, 205-208.	3.0	4
39	Retromer localizes to autophagosomes during HCV replication. Virologica Sinica, 2017, 32, 245-248.	3.0	5
40	Enhanced antiviral and antifibrotic effects of short hairpin RNAs targeting HBV and TGF-β in HBV-persistent mice. Scientific Reports, 2017, 7, 3860.	3.3	8
41	Key components of COPI and COPII machineries are required for chikungunya virus replication. Biochemical and Biophysical Research Communications, 2017, 493, 1190-1196.	2.1	19
42	Interplay between hepatitis C virus and ARF4. Virologica Sinica, 2017, 32, 533-536.	3.0	4
43	Cellular interactome analysis of vaccinia virus K7 protein identifies three transport machineries as binding partners for K7. Virus Genes, 2017, 53, 814-822.	1.6	12
44	Ataxin-10 is involved in Golgi membrane dynamics. Journal of Genetics and Genomics, 2017, 44, 549-552.	3.9	1
45	A screen for inhibitory peptides of hepatitis C virus identifies a novel entry inhibitor targeting E1 and E2. Scientific Reports, 2017, 7, 3976.	3.3	11
46	Sec24C-Dependent Transport of Claudin-1 Regulates Hepatitis C Virus Entry. Journal of Virology, 2017, 91, .	3.4	16
47	ARF1 activation dissociates ADRP from lipid droplets to promote HCV assembly. Biochemical and Biophysical Research Communications, 2016, 475, 31-36.	2.1	11
48	Aspirin inhibits hepatitis <scp>C</scp> virus entry by downregulating claudinâ€1. Journal of Viral Hepatitis, 2016, 23, 62-64.	2.0	29
49	Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IllÎ \pm to induce mitochondrial fragmentation. Scientific Reports, 2016, 6, 23464.	3.3	14
50	A role for retromer in hepatitis C virus replication. Cellular and Molecular Life Sciences, 2016, 73, 869-881.	5.4	28
51	Host restriction factors for hepatitis C virus. World Journal of Gastroenterology, 2016, 22, 1477.	3.3	16
52	Enterovirus 71 2C Protein Inhibits NF-κB Activation by Binding to RelA(p65). Scientific Reports, 2015, 5, 14302.	3.3	55
53	Hepatitis C virus <scp>NS</scp> 5A drives a <scp>PTEN</scp> â€ <scp>PI</scp> 3K/Akt feedback loop to support cell survival. Liver International, 2015, 35, 1682-1691.	3.9	42
54	Hepatitis C Virus NS5A Hijacks ARFGAP1 To Maintain a Phosphatidylinositol 4-Phosphate-Enriched Microenvironment. Journal of Virology, 2014, 88, 5956-5966.	3.4	34

#	Article	IF	CITATIONS
55	Hepatitis C virus NS5A competes with PI4KB for binding to ACBD3 in a genotype-dependent manner. Antiviral Research, 2014, 107, 50-55.	4.1	16
56	The AMPK-related kinase SNARK regulates hepatitis C virus replication and pathogenesis through enhancement of TGF-β signaling. Journal of Hepatology, 2013, 59, 942-948.	3.7	26
57	SOCS1 abrogates IFN's antiviral effect on hepatitis C virus replication. Antiviral Research, 2013, 97, 101-107.	4.1	21
58	A Genetic Screen Identifies Interferon-α Effector Genes Required to Suppress Hepatitis C Virus Replication. Gastroenterology, 2013, 144, 1438-1449.e9.	1.3	37
59	p53 controls hepatitis C virus non-structural protein 5A-mediated downregulation of GADD45α expression via the NF-κB and PI3K–Akt pathways. Journal of General Virology, 2013, 94, 326-335.	2.9	20
60	A functional genomic screen reveals novel host genes that mediate interferon-alpha's effects against hepatitis C virus. Journal of Hepatology, 2012, 56, 326-333.	3.7	60
61	ARF1 and GBF1 Generate a PI4P-Enriched Environment Supportive of Hepatitis C Virus Replication. PLoS ONE, 2012, 7, e32135.	2.5	57
62	Hepatitis C Virus NS5A Disrupts STAT1 Phosphorylation and Suppresses Type I Interferon Signaling. Journal of Virology, 2012, 86, 8581-8591.	3.4	73
63	HIV and HCV Cooperatively Promote Hepatic Fibrogenesis via Induction of Reactive Oxygen Species and NFκB. Journal of Biological Chemistry, 2011, 286, 2665-2674.	3.4	99
64	HIV infection increases HCV-induced hepatocyte apoptosis. Journal of Hepatology, 2011, 54, 612-620.	3.7	50
65	IL28B inhibits hepatitis C virus replication through the JAK–STAT pathway. Journal of Hepatology, 2011, 55, 289-298.	3.7	120
66	M062 Is a Host Range Factor Essential for Myxoma Virus Pathogenesis and Functions as an Antagonist of Host SAMD9 in Human Cells. Journal of Virology, 2011, 85, 3270-3282.	3.4	68
67	Suppressor of Cytokine Signaling 3 Suppresses Hepatitis C Virus Replication in an mTOR-Dependent Manner. Journal of Virology, 2010, 84, 6060-6069.	3.4	41
68	Hepatitis C Virus Regulates Transforming Growth Factor β1 Production Through the Generation of Reactive Oxygen Species in a Nuclear Factor κB–Dependent Manner. Gastroenterology, 2010, 138, 2509-2518.e1.	1.3	177
69	Inhibition of Macrophage Activation by the Myxoma Virus M141 Protein (vCD200). Journal of Virology, 2009, 83, 9602-9607.	3.4	24
70	A role for the host coatomer and KDEL receptor in early vaccinia biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 163-168.	7.1	31
71	Poxvirus Proteomics and Virus-Host Protein Interactions. Microbiology and Molecular Biology Reviews, 2009, 73, 730-749.	6.6	63
72	Interplay between poxviruses and the cellular ubiquitin/ubiquitinâ€like pathways. FEBS Letters, 2009, 583, 607-614.	2.8	42

#	Article	IF	CITATIONS
73	Analysis of Vaccinia Virusâ 'Host Proteinâ 'Protein Interactions: Validations of Yeast Two-Hybrid Screenings. Journal of Proteome Research, 2009, 8, 4311-4318.	3.7	65
74	A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nature Cell Biology, 2008, 10, 1146-1153.	10.3	147
75	Key components of the fission machinery are interchangeable. Nature Cell Biology, 2006, 8, 1376-1382.	10.3	70
76	A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO Journal, 2005, 24, 4133-4143.	7.8	93
77	Expression and characterization of ARSP1 from Eisenia fetida. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 137, 115-122.	2.6	1
78	Functional properties of a recombinant chimeric plasminogen activator with platelet-targeted fibrinolytic and anticoagulant potential. Molecular Genetics and Metabolism, 2004, 82, 304-311.	1.1	12