Karen S Sfanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>P2X4</scp> purinergic receptors offer a therapeutic target for aggressive prostate cancer. Journal of Pathology, 2022, 256, 149-163.	4.5	16
2	Health inequity drives disease biology to create disparities in prostate cancer outcomes. Journal of Clinical Investigation, 2022, 132, .	8.2	17
3	Multiplex immunohistochemical phenotyping of T cells in primary prostate cancer. Prostate, 2022, 82, 706-722.	2.3	10
4	Incorporation of Data From Multiple Hypervariable Regions when Analyzing Bacterial 16S rRNA Gene Sequencing Data. Frontiers in Genetics, 2022, 13, 799615.	2.3	10
5	Association of B7â€H3 expression with racial ancestry, immune cell density, and androgen receptor activation in prostate cancer. Cancer, 2022, 128, 2269-2280.	4.1	16
6	Modeling Human Prostate Cancer Metastasis in Mice via Resection of Subcutaneous Allografts. Frontiers in Oncology, 2022, 12, 877536.	2.8	1
7	Identification of novel biomarkers differentially expressed between African-American and Caucasian-American prostate cancer patients American Journal of Cancer Research, 2022, 12, 1660-1670.	1.4	0
8	P2 purinergic receptor dysregulation in urologic disease. Purinergic Signalling, 2022, 18, 267-287.	2.2	3
9	Differential mast cell phenotypes in benign versus cancer tissues and prostate cancer oncologic outcomes. Journal of Pathology, 2021, 253, 415-426.	4.5	13
10	Why Do Epidemiologic Studies Find an Inverse Association Between Intraprostatic Inflammation and Prostate Cancer: A Possible Role for Colliding Bias?. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 255-259.	2.5	4
11	Feasibility of integrating canine olfaction with chemical and microbial profiling of urine to detect lethal prostate cancer. PLoS ONE, 2021, 16, e0245530.	2.5	21
12	C1Qâ€TNFâ€related peptide 8 (CTRP8) in human prostate cancer. FASEB Journal, 2021, 35, .	0.5	0
13	The interplay of microbiota and hormone regulation in men with prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 935-936.	3.9	3
14	GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS ONE, 2021, 16, e0241934.	2.5	14
15	Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Nature Cancer, 2021, 2, 803-818.	13.2	54
16	Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
17	Pathology Residency Program Special Expertise Tracks Meet the Needs of an Evolving Field. Academic Pathology, 2021, 8, 23742895211037034.	1.1	4
18	Immune Cell Infiltrates and Prognosis in Localized Prostate Cancerâ€. Journal of Pathology, 2021, 256, 135.	4.5	5

KAREN S SFANOS

#	Article	IF	CITATIONS
19	Loss of SELENOF Induces the Transformed Phenotype in Human Immortalized Prostate Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 12040.	4.1	8
20	Examining the Effects of 4He Exposure on the Gut-Brain Axis. Radiation Research, 2021, 197, .	1.5	0
21	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	3.0	28
22	Racial Difference in Prostate Cancer Cell Telomere Lengths in Men with Higher Grade Prostate Cancer: A Clue to the Racial Disparity in Prostate Cancer Outcomes. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 676-680.	2.5	11
23	Prostate carcinogenesis: inflammatory storms. Nature Reviews Cancer, 2020, 20, 455-469.	28.4	114
24	IL8 Expression Is Associated with Prostate Cancer Aggressiveness and Androgen Receptor Loss in Primary and Metastatic Prostate Cancer. Molecular Cancer Research, 2020, 18, 153-165.	3.4	58
25	High Extratumoral Mast Cell Counts Are Associated with a Higher Risk of Adverse Prostate Cancer Outcomes. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 668-675.	2.5	16
26	Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Molecular Cancer Research, 2020, 18, 1815-1824.	3.4	14
27	Molecular Pathology of High-Grade Prostatic Intraepithelial Neoplasia: Challenges and Opportunities. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030403.	6.2	25
28	Lactoferrin CpG Island Hypermethylation and Decoupling of mRNA and Protein Expression in the Early Stages of Prostate Carcinogenesis. American Journal of Pathology, 2019, 189, 2311-2322.	3.8	13
29	Inflammationâ€associated pathologies in a case of prostate schistosomiasis: Implications for a causal role in prostate carcinogenesis. Prostate, 2019, 79, 1316-1325.	2.3	3
30	A Prospective Study of the Urinary and Gastrointestinal Microbiome in Prepubertal Males. Urology, 2019, 131, 204-210.	1.0	26
31	TP53 missense mutation is associated with increased tumor-infiltrating T cells in primary prostate cancer. Human Pathology, 2019, 87, 95-102.	2.0	34
32	If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease. Asian Journal of Urology, 2019, 6, 10-25.	1.2	20
33	A role for paracrine interleukinâ€6 signaling in the tumor microenvironment in prostate tumor growth. Prostate, 2019, 79, 215-222.	2.3	13
34	IBD as a risk factor for prostate cancer: what is the link?. Nature Reviews Urology, 2019, 16, 271-272.	3.8	13
35	The Microbiome and Genitourinary Cancer: A Collaborative Review. European Urology, 2019, 75, 637-646.	1.9	103
36	Targeting Toll-like Receptors in Cancer Prevention. Cancer Prevention Research, 2018, 11, 251-254.	1.5	2

KAREN S SFANOS

#	Article	IF	CITATIONS
37	The inflammatory microenvironment and microbiome in prostate cancer development. Nature Reviews Urology, 2018, 15, 11-24.	3.8	311
38	Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. Journal of Urology, 2018, 199, 161-171.	0.4	188
39	The microbiome in prostate inflammation and prostate cancer. Prostate Cancer and Prostatic Diseases, 2018, 21, 345-354.	3.9	125
40	Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Modern Pathology, 2018, 31, 1539-1552.	5.5	70
41	Phage Therapy in Prostatitis: Recent Prospects. Frontiers in Microbiology, 2018, 9, 1434.	3.5	18
42	Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer and Prostatic Diseases, 2018, 21, 539-548.	3.9	99
43	Corpora amylacea in prostatectomy tissue and associations with molecular, histological, and lifestyle factors. Prostate, 2018, 78, 1172-1180.	2.3	17
44	Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function <i>ERF</i> Mutations. Cancer Discovery, 2017, 7, 973-983.	9.4	94
45	Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer; Report From the 2016 Coffey–Holden Prostate Cancer Academy Meeting. Prostate, 2017, 77, 123-144.	2.3	6
46	Low Intratumoral Mast Cells Are Associated With a Higher Risk of Prostate Cancer Recurrence. Prostate, 2017, 77, 412-424.	2.3	43
47	Rapid Loss of RNA Detection by In Situ Hybridization in Stored Tissue Blocks and Preservation by Cold Storage of Unstained Slides. American Journal of Clinical Pathology, 2017, 148, 398-415.	0.7	52
48	Inflammation, Microbiota, and Prostate Cancer. European Urology Focus, 2016, 2, 374-382.	3.1	40
49	Bacterial Prostatitis Enhances 2-Amino-1-Methyl-6-Phenylimidazo[4,5- <i>b</i>]Pyridine (PhIP)–Induced Cancer at Multiple Sites. Cancer Prevention Research, 2015, 8, 683-692.	1.5	17
50	LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a. Molecular Cancer Research, 2015, 13, 681-688.	3.4	77
51	A Paracrine Role for IL6 in Prostate Cancer Patients: Lack of Production by Primary or Metastatic Tumor Cells. Cancer Immunology Research, 2015, 3, 1175-1184.	3.4	38
52	LEF1 targeting EMT in prostate cancer invasion is mediated by miR-181a. American Journal of Cancer Research, 2015, 5, 1124-32.	1.4	12
53	Biobanking of derivatives from radical retropubic and robotâ€assisted laparoscopic prostatectomy tissues as part of the prostate cancer biorepository network. Prostate, 2014, 74, 61-69.	2.3	16
54	The Role of Inflammation in Prostate Cancer. Advances in Experimental Medicine and Biology, 2014, 816, 153-181.	1.6	77

KAREN S SFANOS

#	Article	IF	CITATIONS
55	A mouse model of chronic prostatic inflammation using a human prostate cancerâ€derived isolate of <i>Propionibacterium acnes</i> . Prostate, 2013, 73, 1007-1015.	2.3	107
56	Multilocus sequence typing (MLST) analysis of <i>Propionibacterium acnes</i> isolates from radical prostatectomy specimens. Prostate, 2013, 73, 770-777.	2.3	51
57	Dietary Restriction and Toremifene on PhIP induced Carcinogenesis in rats. FASEB Journal, 2013, 27, 863.7.	0.5	0
58	Infections and inflammation in prostate cancer. American Journal of Clinical and Experimental Urology, 2013, 1, 3-11.	0.4	42
59	XMRV and prostate cancer—a 'final' perspective. Nature Reviews Urology, 2012, 9, 111-118.	3.8	19
60	Learning from a controversy. Nature Reviews Urology, 2012, 9, 174-174.	3.8	0
61	Prostate cancer and inflammation: the evidence. Histopathology, 2012, 60, 199-215.	2.9	491
62	The "Infectious―Nature of Human Prostate Cancer: A Cautionary Note. Oncotarget, 2011, 2, 281-283.	1.8	12
63	Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3443-3448.	7.1	124
64	Human prostateâ€infiltrating CD8 ⁺ T lymphocytes are oligoclonal and PDâ€1 ⁺ . Prostate, 2009, 69, 1694-1703.	2.3	206
65	A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate, 2008, 68, 306-320.	2.3	167
66	An evaluation of PCR primer sets used for detection of <i>Propionibacterium acnes</i> in prostate tissue samples. Prostate, 2008, 68, 1492-1495.	2.3	38