List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575296/publications.pdf Version: 2024-02-01

HONGEFUL

#	Article	IF	CITATIONS
1	Nanoporous CaCO ₃ Coatings Enabled Uniform Zn Stripping/Plating for Longâ€Life Zinc Rechargeable Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1801090.	10.2	869
2	Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 2019, 62, 550-587.	8.2	817
3	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	15.6	731
4	Photoluminescent Ti ₃ C ₂ MXene Quantum Dots for Multicolor Cellular Imaging. Advanced Materials, 2017, 29, 1604847.	11.1	692
5	A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nature Communications, 2015, 6, 10310.	5.8	634
6	Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 2016, 22, 422-438.	8.2	629
7	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Communications, 2013, 4, 2905.	5.8	606
8	Dendrites in Znâ€Based Batteries. Advanced Materials, 2020, 32, e2001854.	11.1	601
9	Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene. Advanced Energy Materials, 2016, 6, 1600969.	10.2	580
10	A Superior δ-MnO ₂ Cathode and a Self-Healing Zn-δ-MnO ₂ Battery. ACS Nano, 2019, 13, 10643-10652.	7.3	535
11	Polyhedral Oligosilsesquioxaneâ€Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Advanced Functional Materials, 2013, 23, 1824-1831.	7.8	529
12	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	18.7	522
13	A flexible rechargeable aqueous zinc manganese-dioxide battery working at â^'20 °C. Energy and Environmental Science, 2019, 12, 706-715.	15.6	511
14	Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue Inâ€ S ervice Batteries. Advanced Materials, 2019, 31, e1903778.	11.1	494
15	An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9141-9145.	7.2	458
16	Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy and Environmental Science, 2017, 10, 742-749.	15.6	451
17	Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148.	7.3	439
18	Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Advanced Functional Materials, 2018, 28, 1804560.	7.8	433

#	Article	IF	CITATIONS
19	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
20	Multifunctional Energy Storage and Conversion Devices. Advanced Materials, 2016, 28, 8344-8364.	11.1	420
21	Initiating a mild aqueous electrolyte Co ₃ O ₄ /Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(<scp>iii</scp>) rich-electrode. Energy and Environmental Science, 2018, 11, 2521-2530.	15.6	414
22	From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles. ACS Nano, 2015, 9, 4766-4775.	7.3	411
23	Toward Practical Highâ€Arealâ€Capacity Aqueous Zincâ€Metal Batteries: Quantifying Hydrogen Evolution and a Solidâ€Ion Conductor for Stable Zinc Anodes. Advanced Materials, 2021, 33, e2007406.	11.1	382
24	Hydrogenâ€Free and Dendriteâ€Free Allâ€Solidâ€State Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1908	12 1 1.1	381
25	Recent Progress on Flexible and Wearable Supercapacitors. Small, 2017, 13, 1701827.	5.2	365
26	Activating Câ€Coordinated Iron of Iron Hexacyanoferrate for Zn Hybridâ€Ion Batteries with 10 000â€Cycle Lifespan and Superior Rate Capability. Advanced Materials, 2019, 31, e1901521.	11.1	363
27	Achieving Highâ€Voltage and Highâ€Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Twoâ€Species Redox Reaction. Advanced Energy Materials, 2019, 9, 1902446.	10.2	341
28	Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc–Air Battery. ACS Nano, 2018, 12, 1949-1958.	7.3	336
29	Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability. ACS Nano, 2017, 11, 8953-8961.	7.3	310
30	Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano, 2015, 9, 6242-6251.	7.3	291
31	Superâ€Stretchable Zinc–Air Batteries Based on an Alkalineâ€Tolerant Dualâ€Network Hydrogel Electrolyte. Advanced Energy Materials, 2019, 9, 1803046.	10.2	287
32	Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Znâ€MnO ₂ Batteries with Superior Rate Capabilities. Advanced Energy Materials, 2020, 10, 2000035.	10.2	287
33	Achieving Both High Voltage and High Capacity in Aqueous Zincâ€Ion Battery for Record High Energy Density. Advanced Functional Materials, 2019, 29, 1906142.	7.8	285
34	Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9443-9464.	5.2	278
35	Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. Joule, 2019, 3, 613-619.	11.7	273
36	Hydrogenâ€5ubstituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercialâ€Grade Dendriteâ€Free Zinc Anodes. Advanced Materials, 2020, 32, e2001755.	11.1	261

#	Article	IF	CITATIONS
37	Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide. ACS Nano, 2018, 12, 8597-8605.	7.3	257
38	A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. Journal of Materials Chemistry A, 2019, 7, 7784-7790.	5.2	254
39	Solid‣tate Rechargeable Zn//NiCo and Zn–Air Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte. Advanced Energy Materials, 2018, 8, 1802288.	10.2	253
40	Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2016, 8, 24837-24843.	4.0	251
41	Non-metallic charge carriers for aqueous batteries. Nature Reviews Materials, 2021, 6, 109-123.	23.3	250
42	Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. Journal of Materials Chemistry A, 2019, 7, 23378-23415.	5.2	248
43	Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6490-6496.	2.5	247
44	Towards wearable electronic devices: A quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy, 2018, 44, 164-173.	8.2	228
45	Mn ₃ O ₄ nanoparticles on layer-structured Ti ₃ C ₂ MXene towards the oxygen reduction reaction and zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 20818-20823.	5.2	226
46	A Wholly Degradable, Rechargeable Zn–Ti ₃ C ₂ MXene Capacitor with Superior Anti-Self-Discharge Function. ACS Nano, 2019, 13, 8275-8283.	7.3	224
47	Insight on Organic Molecules in Aqueous Znâ€lon Batteries with an Emphasis on the Zn Anode Regulation. Advanced Energy Materials, 2022, 12, .	10.2	208
48	An Overview of Fiberâ€Shaped Batteries with a Focus on Multifunctionality, Scalability, and Technical Difficulties. Advanced Materials, 2020, 32, e1902151.	11.1	207
49	Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO ₂ nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. Energy and Environmental Science, 2021, 14, 3938-3944.	15.6	204
50	A Nanofibrillated Cellulose/Polyacrylamide Electrolyteâ€Based Flexible and Sewable Highâ€Performance Zn–MnO ₂ Battery with Superior Shear Resistance. Small, 2018, 14, e1803978.	5.2	191
51	A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 2019, 58, 732-742.	8.2	187
52	Initiating Hexagonal MoO ₃ for Superb‧table and Fast NH ₄ ⁺ Storage Based on Hydrogen Bond Chemistry. Advanced Materials, 2020, 32, e1907802.	11.1	186
53	Halogenated Ti ₃ C ₂ MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 2021, 15, 1077-1085.	7.3	183
54	A Highly Elastic and Reversibly Stretchable Allâ€Polymer Supercapacitor. Angewandte Chemie - International Edition, 2019, 58, 15707-15711.	7.2	181

#	Article	IF	CITATIONS
55	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	7.3	179
56	An Intrinsically Selfâ€Healing NiCo Zn Rechargeable Battery with a Selfâ€Healable Ferricâ€Ionâ€Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 9810-9813.	7.2	171
57	Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. Journal of Materials Chemistry A, 2013, 1, 1952.	5.2	168
58	Recent Advances in Electrolytes for "Beyond Aqueous―Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2106409.	11.1	167
59	Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1439-A1444.	1.3	164
60	Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon, 2018, 130, 532-543.	5.4	164
61	A Highly Durable, Transferable, and Substrateâ€Versatile Highâ€Performance Allâ€Polymer Microâ€Supercapacitor with Plugâ€andâ€Play Function. Advanced Materials, 2017, 29, 1605137.	11.1	160
62	A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Materials, 2019, 23, 636-645.	9.5	159
63	Polymer composites of boron nitride nanotubes and nanosheets. Journal of Materials Chemistry C, 2014, 2, 10049-10061.	2.7	153
64	Binder-free hierarchical VS ₂ electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. Journal of Materials Chemistry A, 2019, 7, 16330-16338.	5.2	152
65	Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy and Environmental Science, 2021, 14, 3492-3501.	15.6	152
66	A Universal Principle to Design Reversible Aqueous Batteries Based on Deposition–Dissolution Mechanism. Advanced Energy Materials, 2019, 9, 1901838.	10.2	151
67	NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 17057-17066.	5.2	149
68	Phosphorene as Cathode Material for Highâ€Voltage, Antiâ€Selfâ€Discharge Zinc Ion Hybrid Capacitors. Advanced Energy Materials, 2020, 10, 2001024.	10.2	149
69	Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€5ulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	10.2	147
70	Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering Reports, 2020, 139, 100520.	14.8	145
71	Component Matters: Paving the Roadmap toward Enhanced Electrocatalytic Performance of Graphitic C ₃ N ₄ -Based Catalysts <i>via</i> Atomic Tuning. ACS Nano, 2017, 11, 6004-6014.	7.3	144
72	Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy and Environmental Science, 2022, 15, 1086-1096.	15.6	141

#	Article	IF	CITATIONS
73	A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. Journal of Materials Chemistry A, 2018, 6, 8549-8557.	5.2	138
74	Highly Efficient Electrochemical Reduction of Nitrogen to Ammonia on Surface Termination Modified Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2020, 14, 9089-9097.	7.3	137
75	Toward a Practical Zn Powder Anode: Ti ₃ C ₂ T <i>x</i> MXene as a Lattice-Match Electrons/Ions Redistributor. ACS Nano, 2021, 15, 14631-14642.	7.3	137
76	A Flexible Solidâ€State Aqueous Zinc Hybrid Battery with Flat and Highâ€Voltage Discharge Plateau. Advanced Energy Materials, 2019, 9, 1902473.	10.2	136
77	Recent Progress of <scp>MX</scp> eneâ€Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Energy and Environmental Materials, 2018, 1, 183-195.	7.3	135
78	Dendrites issues and advances in Zn anode for aqueous rechargeable Znâ€based batteries. EcoMat, 2020, 2, e12035.	6.8	135
79	A shape memory supercapacitor and its application in smart energy storage textiles. Journal of Materials Chemistry A, 2016, 4, 1290-1297.	5.2	134
80	A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Science Bulletin, 2018, 63, 1077-1086.	4.3	134
81	Capacitance Enhancement in a Semiconductor Nanostructureâ€Based Supercapacitor by Solar Light and a Selfâ€Powered Supercapacitor–Photodetector System. Advanced Functional Materials, 2016, 26, 4481-4490.	7.8	133
82	Activating the I ⁰ /I ⁺ redox couple in an aqueous I ₂ –Zn battery to achieve a high voltage plateau. Energy and Environmental Science, 2021, 14, 407-413.	15.6	129
83	In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Advanced Energy Materials, 2020, 10, 2001791.	10.2	128
84	Vertically Aligned Sn ⁴⁺ Preintercalated Ti ₂ CT _X MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. Advanced Energy Materials, 2020, 10, 2001394.	10.2	127
85	An electrochromic supercapacitor and its hybrid derivatives: quantifiably determining their electrical energy storage by an optical measurement. Journal of Materials Chemistry A, 2015, 3, 21321-21327.	5.2	124
86	Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon, 2018, 127, 459-468.	5.4	123
87	Advances in Flexible and Wearable Energy torage Textiles. Small Methods, 2018, 2, 1800124.	4.6	123
88	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie - International Edition, 2021, 60, 1011-1021.	7.2	122
89	Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure. Advanced Energy Materials, 2021, 11, 2003931.	10.2	122
90	Enhanced Redox Kinetics and Duration of Aqueous I ₂ /I ^{â^'} Conversion Chemistry by MXene Confinement. Advanced Materials, 2021, 33, e2006897.	11.1	121

#	Article	IF	CITATIONS
91	A high performance fiber-shaped PEDOT@MnO ₂ //C@Fe ₃ O ₄ asymmetric supercapacitor for wearable electronics. Journal of Materials Chemistry A, 2016, 4, 14877-14883.	5.2	118
92	3D Graphene Fibers Grown by Thermal Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1705380.	11.1	116
93	Multiâ€Functional Hydrogels for Flexible Zincâ€Based Batteries Working under Extreme Conditions. Advanced Energy Materials, 2021, 11, 2101749.	10.2	116
94	Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20, 234-242.	9.5	115
95	Stabilized Co ³⁺ /Co ⁴⁺ Redox Pair in In Situ Produced CoSe _{2â^'} <i>_x</i> â€Derived Cobalt Oxides for Alkaline Zn Batteries with 10 000â€Cycle Lifespan and 1.9â€V Voltage Plateau. Advanced Energy Materials, 2020, 10, 2000892.	10.2	114
96	Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. Journal of Materials Chemistry A, 2016, 4, 12205-12211.	5.2	112
97	Construction of a hierarchical 3D Co/N-carbon electrocatalyst for efficient oxygen reduction and overall water splitting. Journal of Materials Chemistry A, 2018, 6, 489-497.	5.2	111
98	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zincâ€Iodine Battery with Improved Power and Energy Densities. Angewandte Chemie - International Edition, 2021, 60, 3791-3798.	7.2	111
99	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co ₃ O ₄ @polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A, 2018, 6, 19058-19065.	5.2	110
100	Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy, 2018, 50, 623-631.	8.2	110
101	Efficient Ammonia Electrosynthesis and Energy Conversion through a Znâ€Nitrate Battery by Iron Doping Engineered Nickel Phosphide Catalyst. Advanced Energy Materials, 2022, 12, .	10.2	108
102	Highly Flexible and Self-Healable Thermal Interface Material Based on Boron Nitride Nanosheets and a Dual Cross-Linked Hydrogel. ACS Applied Materials & Interfaces, 2017, 9, 10078-10084.	4.0	107
103	Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nature Communications, 2021, 12, 2400.	5.8	107
104	Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28, 264-292.	9.5	106
105	Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn–MnO ₂ Battery and a Flexible Battery–Sensor System. ACS Applied Materials & Interfaces, 2018, 10, 44527-44534.	4.0	105
106	Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Advanced Materials, 2020, 32, e2001469.	11.1	104
107	Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nature Communications, 2021, 12, 3106.	5.8	104
108	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 23836-23844.	7.2	102

#	Article	IF	CITATIONS
109	Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 2435-2440.	4.0	99
110	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	7.2	98
111	Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy and Environmental Science, 2018, 11, 2414-2422.	15.6	97
112	Nanostructured Anode Materials for Nonâ€aqueous Lithium Ion Hybrid Capacitors. Energy and Environmental Materials, 2018, 1, 75-87.	7.3	97
113	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 13552-13561.	4.0	95
114	Biomimetic organohydrogel electrolytes for highâ€environmental adaptive energy storage devices. EcoMat, 2019, 1, e12008.	6.8	95
115	A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	95
116	Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy and Environmental Science, 2021, 14, 2441-2450.	15.6	93
117	Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid zn batteries. Energy Storage Materials, 2021, 36, 427-434.	9.5	92
118	The rise of aqueous rechargeable batteries with organic electrode materials. Journal of Materials Chemistry A, 2020, 8, 15479-15512.	5.2	90
119	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	7.3	90
120	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
121	Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon, 2018, 140, 296-305.	5.4	88
122	Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Advances, 2019, 9, 16313-16319.	1.7	88
123	Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film― Advanced Materials, 2020, 32, e2003070.	11.1	88
124	Carbon‧upported Nickel Selenide Hollow Nanowires as Advanced Anode Materials for Sodiumâ€ŀon Batteries. Small, 2018, 14, 1702669.	5.2	87
125	A Highly Stable and Durable Capacitive Strain Sensor Based on Dynamically Superâ€Tough Hydro/Organoâ€Gels. Advanced Functional Materials, 2021, 31, 2010830.	7.8	84
126	Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale, 2019, 11, 17992-18008.	2.8	83

#	Article	IF	CITATIONS
127	Boron Element Nanowires Electrode for Supercapacitors. Advanced Energy Materials, 2018, 8, 1703117.	10.2	81
128	Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano, 2019, 13, 7270-7280.	7.3	81
129	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	7.8	81
130	Recent progress of fiber-shaped asymmetric supercapacitors. Materials Today Energy, 2017, 5, 1-14.	2.5	80
131	A Usage Scenario Independent "Air Chargeable―Flexible Zinc Ion Energy Storage Device. Advanced Energy Materials, 2019, 9, 1900509.	10.2	80
132	Highly Integrated Supercapacitor‧ensor Systems via Material and Geometry Design. Small, 2016, 12, 3393-3399.	5.2	78
133	Integrating a Triboelectric Nanogenerator and a Zincâ€lon Battery on a Designed Flexible 3D Spacer Fabric. Small Methods, 2018, 2, 1800150.	4.6	78
134	Confining Aqueous Zn–Br Halide Redox Chemistry by Ti ₃ C ₂ T _X MXene. ACS Nano, 2021, 15, 1718-1726.	7.3	78
135	Commencing an Acidic Battery Based on a Copper Anode with Ultrafast Protonâ€Regulated Kinetics and Superior Dendriteâ€Free Property. Advanced Materials, 2019, 31, e1905873.	11.1	77
136	A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy, 2020, 71, 104583.	8.2	75
137	Fabrication of Boron Nitride Nanosheets by Exfoliation. Chemical Record, 2016, 16, 1204-1215.	2.9	74
138	Molecular Crowding Effect in Aqueous Electrolytes to Suppress Hydrogen Reduction Reaction and Enhance Electrochemical Nitrogen Reduction. Advanced Energy Materials, 2021, 11, 2101699.	10.2	73
139	Self-healable electroluminescent devices. Light: Science and Applications, 2018, 7, 102.	7.7	71
140	Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Materials, 2020, 25, 86-92.	9.5	68
141	Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery. Materials Today Energy, 2019, 14, 100361.	2.5	67
142	Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Advances, 2016, 6, 79090-79094.	1.7	66
143	Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. Advanced Energy Materials, 2021, 11, 2003308.	10.2	61
144	<i>In situ</i> formation of NaTi ₂ (PO ₄) ₃ cubes on Ti ₃ C ₂ MXene for dual-mode sodium storage. Journal of Materials Chemistry A, 2018, 6, 18525-18532.	5.2	60

#	Article	IF	CITATIONS
145	Highâ€Voltage Organic Cathodes for Zincâ€Ion Batteries through Electron Cloud and Solvation Structure Regulation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	60
146	Cations Coordinationâ€Regulated Reversibility Enhancement for Aqueous Znâ€ion Battery. Advanced Functional Materials, 2021, 31, 2105736.	7.8	59
147	Smallâ€Dipoleâ€Moleculeâ€Containing Electrolytes for Highâ€Voltage Aqueous Rechargeable Batteries. Advanced Materials, 2022, 34, e2106180.	11.1	58
148	Electrospun Nâ€Doped Hierarchical Porous Carbon Nanofiber with Improved Degree of Graphitization for Highâ€Performance Lithium Ion Capacitor. Chemistry - A European Journal, 2018, 24, 10460-10467.	1.7	55
149	Ni ₃ S ₂ /Ni nanosheet arrays for high-performance flexible zinc hybrid batteries with evident two-stage charge and discharge processes. Journal of Materials Chemistry A, 2019, 7, 18915-18924.	5.2	55
150	Recent Advances in Electrode Fabrication for Flexible Energy‣torage Devices. Advanced Materials Technologies, 2019, 4, 1900083.	3.0	54
151	Boosting the Cycling Stability of Aqueous Flexible Zn Batteries via F Doping in Nickel–Cobalt Carbonate Hydroxide Cathode. Small, 2020, 16, e2001935.	5.2	54
152	A manganese hexacyanoferrate framework with enlarged ion tunnels and twoâ€species redox reaction for aqueous Al-ion batteries. Nano Energy, 2021, 84, 105945.	8.2	54
153	Ether–Water Hybrid Electrolyte Contributing to Excellent Mg Ion Storage in Layered Sodium Vanadate. ACS Nano, 2022, 16, 6093-6102.	7.3	54
154	Organic materialsâ€based cathode for zinc ion battery. SmartMat, 2022, 3, 565-581.	6.4	54
155	A rechargeable Al–N ₂ battery for energy storage and highly efficient N ₂ fixation. Energy and Environmental Science, 2020, 13, 2888-2895.	15.6	53
156	Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug. International Journal of Nanomedicine, 2016, Volume 11, 4573-4582.	3.3	52
157	Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4â^' to Al3+ and an electrochromic Al ion battery. Energy Storage Materials, 2021, 39, 412-418.	9.5	52
158	A modularization approach for linear-shaped functional supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4580-4586.	5.2	50
159	Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zincâ€Based Wearable Energyâ€Storage Devices. Angewandte Chemie - International Edition, 2022, 61, .	7.2	50
160	Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: achieving multiple deformabilities. Energy and Environmental Science, 2021, 14, 3599-3608.	15.6	49
161	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nature Communications, 2022, 13, 752.	5.8	49
162	Conversionâ€Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries. Advanced Materials, 2021, 33, e2105426.	11.1	48

#	Article	IF	CITATIONS
163	Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation. Journal of Power Sources, 2016, 321, 193-200.	4.0	46
164	Metalâ€Tellurium Batteries: A Rising Energy Storage System. Small Structures, 2020, 1, 2000005.	6.9	46
165	Sulfonated Graphene Aerogels Enable Safeâ€toâ€Use Flexible Perovskite Solar Modules. Advanced Energy Materials, 2022, 12, .	10.2	46
166	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie, 2020, 132, 24044-24052.	1.6	45
167	Temperature-Dependent Lipid Extraction from Membranes by Boron Nitride Nanosheets. ACS Nano, 2018, 12, 2764-2772.	7.3	44
168	Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. Matter, 2021, 4, 3146-3160.	5.0	44
169	Electrochemical Nitrate Production <i>via</i> Nitrogen Oxidation with Atomically Dispersed Fe on N-Doped Carbon Nanosheets. ACS Nano, 2022, 16, 655-663.	7.3	44
170	Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Advances, 2015, 5, 33981-33989.	1.7	43
171	pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. International Journal of Nanomedicine, 2018, Volume 13, 641-652.	3.3	43
172	High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. ACS Applied Materials & Interfaces, 2019, 11, 15646-15655.	4.0	43
173	Toward Enhancing Wearability and Fashion of Wearable Supercapacitor with Modified Polyurethane Artificial Leather Electrolyte. Nano-Micro Letters, 2018, 10, 38.	14.4	42
174	A Highly Elastic and Reversibly Stretchable Allâ€₽olymer Supercapacitor. Angewandte Chemie, 2019, 131, 15854-15858.	1.6	42
175	Flexible Dual-Mode Tactile Sensor Derived from Three-Dimensional Porous Carbon Architecture. ACS Applied Materials & Interfaces, 2017, 9, 22685-22693.	4.0	41
176	Toward Multifunctional and Wearable Smart Skins with Energyâ€Harvesting, Touchâ€Sensing, and Exteroceptionâ€Visualizing Capabilities by an Allâ€Polymer Design. Advanced Electronic Materials, 2019, 5, 1900553.	2.6	41
177	A reversible Zn-metal battery. Nature Nanotechnology, 2021, 16, 854-855.	15.6	41
178	Highly Thermally/Electrochemically Stable I ^{â^'} /I ₃ ^{â^'} Bonded Organic Salts with High I Content for Longâ€Life Li–I ₂ Batteries. Advanced Energy Materials, 2022, 12,	10.2	40
179	Metalâ€Tuned Acetylene Linkages in Hydrogen Substituted Graphdiyne Boosting the Electrochemical Oxygen Reduction. Small, 2020, 16, e1907341.	5.2	39
180	Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Research Letters, 2014, 9, 643.	3.1	37

#	Article	IF	CITATIONS
181	Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight. ACS Applied Materials & Interfaces, 2016, 8, 142-151.	4.0	37
182	A Long‣ife Batteryâ€Type Electrochromic Window with Remarkable Energy Storage Ability. Solar Rrl, 2020, 4, 1900425.	3.1	37
183	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie - International Edition, 2021, 60, 5443-5452.	7.2	37
184	Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. Energy Storage Materials, 2020, 33, 230-238.	9.5	36
185	Integration designs toward newâ€generation wearable energy supplyâ€sensor systems for realâ€time health monitoring: A minireview. InformaĂnĂ-MateriĂ¡ly, 2020, 2, 1109-1130.	8.5	35
186	In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chemical Engineering Journal, 2022, 434, 134688.	6.6	35
187	Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€Ion Conversion Battery. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
188	Enhancement of thermal conductivity in water-based nanofluids employing TiO2/reduced graphene oxide composites. Journal of Materials Science, 2016, 51, 10104-10115.	1.7	33
189	Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries. Nature Communications, 2022, 13, .	5.8	33
190	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zincâ€iodine Battery with Improved Power and Energy Densities. Angewandte Chemie, 2021, 133, 3835-3842.	1.6	32
191	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	1.6	31
192	Tunable Freeâ€Standing Ultrathin Porous Nickel Film for High Performance Flexible Nickel–Metal Hydride Batteries. Advanced Energy Materials, 2018, 8, 1702467.	10.2	31
193	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
194	Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. International Journal of Nanomedicine, 2015, 10, 5343.	3.3	30
195	Boron Nitride Nanosheet Dispersion at High Concentrations. ACS Applied Materials & Interfaces, 2021, 13, 44751-44759.	4.0	30
196	Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion Battery. ACS Nano, 2021, 15, 17717-17728.	7.3	30
197	Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. Materials Science and Engineering C, 2019, 96, 552-560.	3.8	29
198	Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. Energy Storage Materials, 2020, 31, 451-458.	9.5	29

#	Article	IF	CITATIONS
199	Spherical Boron Nitride Supported Gold–Copper Catalysts for the Lowâ€Temperature Selective Oxidation of Ethanol. ChemCatChem, 2017, 9, 1363-1367.	1.8	28
200	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. ACS Applied Materials & Interfaces, 2018, 10, 21297-21305.	4.0	28
201	Initiating a Roomâ€Temperature Rechargeable Aqueous Fluorideâ€Ion Battery with Long Lifespan through a Rational Buffering Phase Design. Advanced Energy Materials, 2021, 11, 2003714.	10.2	28
202	Tellurium: A High-Performance Cathode for Magnesium Ion Batteries Based on a Conversion Mechanism. ACS Nano, 2022, 16, 5349-5357.	7.3	28
203	A Longâ€Life Batteryâ€Type Electrochromic Window with Remarkable Energy Storage Ability. Solar Rrl, 2020, 4, 2070036.	3.1	27
204	Metal-Iodine and Metal-Bromine Batteries: A Review. Bulletin of the Chemical Society of Japan, 2021, 94, 2036-2042.	2.0	27
205	Crystallized lithium titanate nanosheets prepared <i>via</i> spark plasma sintering for ultra-high rate lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 455-460.	5.2	26
206	Highâ€Rate Aqueous Aluminumâ€lon Batteries Enabled by Confined Iodine Conversion Chemistry. Small Methods, 2021, 5, e2100611.	4.6	26
207	LaB6 nanowires for supercapacitors. Materials Today Energy, 2018, 10, 28-33.	2.5	25
208	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon Batteries. Angewandte Chemie, 2022, 134, .	1.6	24
209	Mechanistic Study of Interfacial Modification for Stable Zn Anode Based on a Thin Separator. Small, 2022, 18, e2201045.	5.2	24
210	The magnetohydrodynamic effect enables a dendrite-free Zn anode in alkaline electrolytes. Journal of Materials Chemistry A, 2022, 10, 11971-11979.	5.2	24
211	Layer-by-Layer Assembly of Multifunctional Porous N-Doped Carbon Nanotube Hybrid Architectures for Flexible Conductors and Beyond. ACS Applied Materials & Interfaces, 2015, 7, 6716-6723.	4.0	21
212	A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Selfâ€Healing Function. Small, 2018, 14, e1800315.	5.2	21
213	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie, 2021, 133, 1024-1034.	1.6	21
214	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, e202111826.	7.2	21
215	Highâ€Voltage Organic Cathodes for Zinc″on Batteries through Electron Cloud and Solvation Structure Regulation. Angewandte Chemie, 2022, 134, .	1.6	20
216	Ionic Liquid-Softened Polymer Electrolyte for Anti-Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 27287-27293.	4.0	20

#	Article	IF	CITATIONS
217	Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage. Nano-Micro Letters, 2021, 13, 178.	14.4	19
218	BiOI Nanopaper As a High-Capacity, Long-Life and Insertion-Type Anode for a Flexible Quasi-Solid-State Zn-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 25516-25523.	4.0	19
219	The electromagnetic property and microwave absorption of wormhole-like mesoporous carbons with different surface areas. Journal of Materials Science, 2016, 51, 9723-9731.	1.7	18
220	Cl [–] /SO ₃ ^{2–} -Codoped Poly(3,4-ethylenedioxythiophene) That Interpenetrates and Encapsulates Porous Fe ₂ O ₃ To Form Composite Nanoframeworks for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30801-30809.	4.0	18
221	RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110964.	2.5	17
222	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	2.8	17
223	Weak morphology dependent valence band structure of boron nitride. Journal of Applied Physics, 2013, 114, .	1.1	16
224	Ultrasmall Fe ₂ O ₃ Nanoparticles Anchored on Threeâ€Dimensional Hierarchical Porous Grapheneâ€like Networks for High Rate Capability Supercapacitors. ChemElectroChem, 2016, 3, 1820-1826.	1.7	15
225	Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 3058-3067.	1.5	15
226	Energy-dissipative dual-crosslinked hydrogels for dynamically super-tough sensors. Science China Materials, 2021, 64, 2764-2776.	3.5	15
227	Perspective on Micro-Supercapacitors. Frontiers in Chemistry, 2021, 9, 807500.	1.8	14
228	An Intrinsically Selfâ€Healing NiCo Zn Rechargeable Battery with a Selfâ€Healable Ferricâ€Ionâ€Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angewandte Chemie, 2018, 130, 9958-9961.	1.6	13
229	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie, 2021, 133, 5503-5512.	1.6	13
230	Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Research, 2021, 14, 4154-4162.	5.8	13
231	Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. Journal of Materials Chemistry A, 2022, 10, 4739-4748.	5.2	11
232	Graphene stirrer with designed movements: Targeting on environmental remediation and supercapacitor applications. Green Energy and Environment, 2018, 3, 86-96.	4.7	10
233	<i>In situ</i> doping and synthesis of two-dimensional nanomaterials using mechano-chemistry. Nanoscale Horizons, 2019, 4, 642-646.	4.1	10
234	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. Materials Today, 2021, 51, 87-95.	8.3	10

#	Article	IF	CITATIONS
235	A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase. Nanoscale, 2017, 9, 11511-11522.	2.8	9
236	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
237	Reversible Intercalation of Alâ€lons in Poly(3,4â€Ethylenedioxythiophene):Poly(4â€Styrenesulfonate) Electrode for Aqueous Electrochemical Capacitors with High Energy Density. Energy Technology, 2021, 9, 2001036.	1.8	7
238	Bifunctional Catalysts for Metalâ€Air Batteries. Batteries and Supercaps, 2019, 2, 270-271.	2.4	6
239	Carbonaceous and Polymer Materials for Li–S Batteries with an Emphasis on Flexible Devices. Advanced Energy and Sustainability Research, 2021, 2, 2000096.	2.8	6
240	Battery-Sensor Hybrid: A New Gas Sensing Paradigm with Complete Energy Self-Sufficiency. ACS Applied Materials & Interfaces, 2021, 13, 46507-46517.	4.0	6
241	Flexible, Electrically Conductive, Nanostructured, Asymmetric Aerogel Films for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 59174-59184.	4.0	5
242	Multiâ€Functional Hydrogels for Flexible Zincâ€Based Batteries Working under Extreme Conditions (Adv.) Tj ETQ	q0,0,0 rgE	3T /Overlock

243	Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€Ion Conversion Battery. Angewandte Chemie, 2022, 134, .	1.6	4
244	Incorporation of Platinum and Gold Partially Reduced Graphene Oxide into Polymer Electrolyte Membrane Fuel Cells for Increased Output Power and Carbon Monoxide Tolerance. MRS Advances, 2016, 1, 1477-1486.	0.5	3
245	Energy and Optoelectronic Related Nanomaterials and Applications. Small, 2017, 13, 1703395.	5.2	1
246	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie, 2022, 134, .	1.6	0