
Jinghui Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5752869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rationally designed helical peptidomimetics disrupt α-synuclein fibrillation. Chemical Communications, 2022, 58, 5132-5135.	2.2	15
2	ATP Impedes the Inhibitory Effect of Hsp90 on Aβ40 Fibrillation. Journal of Molecular Biology, 2021, 433, 166717.	2.0	11
3	Cryoâ€electron Microscopy Imaging of Alzheimer's Amyloidâ€beta 42 Oligomer Displayed on a Functionally and Structurally Relevant Scaffold. Angewandte Chemie, 2021, 133, 18828-18835.	1.6	5
4	Cryoâ€electron Microscopy Imaging of Alzheimer's Amyloidâ€beta 42 Oligomer Displayed on a Functionally and Structurally Relevant Scaffold. Angewandte Chemie - International Edition, 2021, 60, 18680-18687.	7.2	39
5	Amyloid-beta–copper interaction studied by simultaneous nitrogen K and copper L2,3-edge soft X-ray absorption spectroscopy. IScience, 2021, 24, 103465.	1.9	2
6	Editorial: The Biochemistry of Amyloids in Neurodegenerative Diseases, Volume I. Frontiers in Neuroscience, 2021, 15, 819481.	1.4	0
7	Antimicrobial Peptide Mimetics Based on a Diphenylacetylene Scaffold: Synthesis, Conformational Analysis, and Activity. ChemMedChem, 2020, 15, 1932-1939.	1.6	3
8	Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Quarterly Reviews of Biophysics, 2020, 53, e12.	2.4	12
9	Metal binding to the amyloid-β peptides in the presence of biomembranes: potential mechanisms of cell toxicity. Journal of Biological Inorganic Chemistry, 2019, 24, 1189-1196.	1.1	49
10	Membrane-mimetic systems for biophysical studies of the amyloid-β peptide. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 492-501.	1.1	34
11	Nuclear Pore Membrane Proteins Self-Assemble into Nanopores. Biochemistry, 2019, 58, 484-488.	1.2	3
12	The Neuronal Tau Protein Blocks <i>in Vitro</i> Fibrillation of the Amyloid-β (Aβ) Peptide at the Oligomeric Stage. Journal of the American Chemical Society, 2018, 140, 8138-8146.	6.6	49
13	The Amyloidâ€Î² Peptide in Amyloid Formation Processes: Interactions with Blood Proteins and Naturally Occurring Metal Ions. Israel Journal of Chemistry, 2017, 57, 674-685.	1.0	21
14	Alzheimer's disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Scientific Reports, 2017, 7, 14423.	1.6	81
15	Maleimido-proxyl as an EPR spin label for the evaluation of conformational changes of albumin. European Biophysics Journal, 2017, 46, 773-787.	1.2	15
16	Non-covalent Sâ< ⁻ O interactions control conformation in a scaffold that disrupts islet amyloid polypeptide fibrillation. Chemical Science, 2016, 7, 6435-6439.	3.7	22
17	Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species. Journal of Alzheimer's Disease, 2016, 54, 971-982.	1.2	34
18	Characterization of Mn(II) ion binding to the amyloid-β peptide in Alzheimer⿿s disease. Journal of Trace Elements in Medicine and Biology, 2016, 38, 183-193.	1.5	60

Јілсниі Luo

#	Article	IF	CITATIONS
19	Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis. Journal of Biological Chemistry, 2016, 291, 16485-16493.	1.6	117
20	Reciprocal Molecular Interactions between the Aβ Peptide Linked to Alzheimer's Disease and Insulin Linked to Diabetes Mellitus Type II. ACS Chemical Neuroscience, 2016, 7, 269-274.	1.7	37
21	Cyclic Peptides as Inhibitors of Amyloid Fibrillation. Chemistry - A European Journal, 2014, 20, 2410-2419.	1.7	44
22	The AÎ ² peptide forms non-amyloid fibrils in the presence of carbon nanotubes. Nanoscale, 2014, 6, 6720-6726.	2.8	43
23	Endogenous Polyamines Reduce the Toxicity of Soluble Aβ Peptide Aggregates Associated with Alzheimer's Disease. Biomacromolecules, 2014, 15, 1985-1991.	2.6	30
24	Alzheimer Peptides Aggregate into Transient Nanoglobules That Nucleate Fibrils. Biochemistry, 2014, 53, 6302-6308.	1.2	32
25	The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. Journal of Biological Inorganic Chemistry, 2014, 19, 623-634.	1.1	88
26	Non-chaperone Proteins Can Inhibit Aggregation and Cytotoxicity of Alzheimer Amyloid β Peptide. Journal of Biological Chemistry, 2014, 289, 27766-27775.	1.6	53
27	Inhibiting and Reversing Amyloidâ€Î² Peptide (1–40) Fibril Formation with Gramicidinâ€S and Engineered Analogues. Chemistry - A European Journal, 2013, 19, 17338-17348.	1.7	39
28	Biophysical Studies of the Amyloid βâ€₽eptide: Interactions with Metal Ions and Small Molecules. ChemBioChem, 2013, 14, 1692-1704.	1.3	89
29	Cellular Polyamines Promote Amyloid-Beta (Aβ) Peptide Fibrillation and Modulate the Aggregation Pathways. ACS Chemical Neuroscience, 2013, 4, 454-462.	1.7	89
30	Human lysozyme inhibits the in vitro aggregation of AÎ ² peptides, which in vivo are associated with Alzheimer's disease. Chemical Communications, 2013, 49, 6507.	2.2	44
31	Exploiting preQ ₁ Riboswitches To Regulate Ribosomal Frameshifting. ACS Chemical Biology, 2013, 8, 733-740.	1.6	12
32	An efficient nanolitre-volume multi-channel device for highly viscous materials used in membrane protein crystallization. Journal of Applied Crystallography, 2013, 46, 829-831.	1.9	0
33	Examining the promiscuous phosphatase activity of <i>Pseudomonas aeruginosa</i> arylsulfatase: A comparison to analogous phosphatases. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1211-1226.	1.5	27
34	Catalytic promiscuity in <i>Pseudomonas aeruginosa</i> arylsulfatase as an example of chemistryâ€driven protein evolution. FEBS Letters, 2012, 586, 1622-1630.	1.3	29
35	Conformation Effects of CpG Methylation on Single-Stranded DNA Oligonucleotides: Analysis of the Opioid Peptide Dynorphin-Coding Sequences. PLoS ONE, 2012, 7, e39605.	1.1	10
36	A Straightforward and Robust Method for Introducing Human Hair as a Nucleant into High Throughput Crystallization Trials. Crystal Growth and Design, 2011, 11, 1170-1176.	1.4	15

Jinghui Luo

#	Article	IF	CITATIONS
37	Ribonucleotide reductase inhibition by p-alkoxyphenols studied by molecular docking and molecular dynamics simulations. Archives of Biochemistry and Biophysics, 2011, 516, 29-34.	1.4	14
38	Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde) Tj ETQq		
	Biochemistry, 2011, 105, 1422-1431.	1.5	105
39	Inhibition of chlamydial class Ic ribonucleotide reductase by Câ€ŧerminal peptides from protein R2. Journal of Peptide Science, 2011, 17, 756-762.	0.8	1

In Silico Analysis of the Apolipoprotein E and the Amyloid Î² Peptide Interaction: Misfolding Induced by
Frustration of the Salt Bridge Network. PLoS Computational Biology, 2010, 6, e1000663.