Zongwei Cai

List of Publications by Citations

Source: https://exaly.com/author-pdf/5752293/zongwei-cai-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

613 papers

15,170 citations

64 h-index

84 g-index

646 ext. papers

18,637 ext. citations

7.1 avg, IF

7.07 L-index

#	Paper	IF	Citations
613	Adsorption mechanisms of five bisphenol analogues on PVC microplastics. <i>Science of the Total Environment</i> , 2019 , 650, 671-678	10.2	190
612	Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. <i>Nature Communications</i> , 2016 , 7, 11960	17.4	181
611	Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 250-259	21.8	178
610	Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility. <i>Chemosphere</i> , 2005 , 60, 810-6	8.4	173
609	The angiosuppressive effects of 20(R)- ginsenoside Rg3. <i>Biochemical Pharmacology</i> , 2006 , 72, 437-45	6	169
608	Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. <i>Analytica Chimica Acta</i> , 2013 , 790, 1-13	6.6	148
607	Transketolase counteracts oxidative stress to drive cancer development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E725-34	11.5	138
606	Synthesis and near-infrared luminescence of 3d-4f bi-metallic Schiff base complexes. <i>New Journal of Chemistry</i> , 2002 , 26, 275-278	3.6	136
605	Comparison on gestation and lactation exposure of perfluorinated compounds for newborns. <i>Environment International</i> , 2011 , 37, 1206-12	12.9	123
604	Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. <i>Journal of Materials Chemistry</i> , 2011 , 21, 518-524		117
603	Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. <i>Analytical Chemistry</i> , 2011 , 83, 3161-9	7.8	114
602	Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. <i>Chemical Communications</i> , 2017 , 53, 3649-3652	5.8	110
601	An iridium(iii)-based irreversible protein-protein interaction inhibitor of BRD4 as a potent anticancer agent. <i>Chemical Science</i> , 2015 , 6, 5400-5408	9.4	110
600	One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. <i>Chemical Communications</i> , 2011 , 47, 9675-7	5.8	105
599	Degradation of indometacin by simulated sunlight activated CDs-loaded BiPO4 photocatalyst: Roles of oxidative species. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 129-139	21.8	103
598	Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts by an enantiomeric iridium(iii) metal-based compound. <i>Chemical Science</i> , 2017 , 8, 4756-4763	9.4	102
597	E-waste recycling induced polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzo-furans pollution in the ambient environment. <i>Environment International</i> , 2008 , 34, 67-72	12.9	102

(2018-2015)

596	Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats. <i>Chemical Research in Toxicology</i> , 2015 , 28, 408-18	4	101
595	The latest developments and applications of mass spectrometry in food-safety and quality analysis. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 52, 170-185	14.6	100
594	A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs. <i>Journal of Mass Spectrometry</i> , 2002 , 37, 1013-24	2.2	97
593	Chiral rodlike platinum complexes, double helical chains, and potential asymmetric hydrogenation ligand based on "linear" building blocks: 1,8,9,16-tetrahydroxytetraphenylene and 1,8,9,16-tetrakis(diphenylphosphino)tetraphenylene. <i>Journal of the American Chemical Society</i> ,	16.4	95
592	Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. <i>Cell</i> , 2021 , 184, 2212-2228.e12	56.2	94
591	Mitochondrial damage: an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. <i>Journal of Hazardous Materials</i> , 2015 , 287, 392-401	12.8	91
590	Photocatalytic oxidation of triclosan. <i>Chemosphere</i> , 2006 , 65, 390-9	8.4	90
589	Sources of unintentionally produced polychlorinated naphthalenes. <i>Chemosphere</i> , 2014 , 94, 1-12	8.4	88
588	Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix. <i>Analytical Chemistry</i> , 2015 , 87, 8005-12	7.8	84
587	Occurrence and Partitioning of Bisphenol Analogues in Adults' Blood from China. <i>Environmental Science & Environmental Science</i>	10.3	84
586	Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson's disease. <i>Scientific Reports</i> , 2015 , 5, 13888	4.9	83
585	Studies on the aconitine-type alkaloids in the roots of Aconitum Carmichaeli Debx. by HPLC/ESIMS/MS(n). <i>Talanta</i> , 2009 , 77, 1800-7	6.2	83
584	In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2005 , 816, 223-32	3.2	83
583	Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. <i>Proteomics</i> , 2008 , 8, 1851-8	4.8	81
582	DNA-binding affinities and sequence selectivity of quaternary benzophenanthridine alkaloids sanguinarine, chelerythrine, and nitidine. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 5439-45	3.4	79
581	Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors. <i>ACS Energy Letters</i> , 2021 , 6, 9-15	20.1	79
580	LC-MS-based urinary metabolite signatures in idiopathic Parkinson's disease. <i>Journal of Proteome Research</i> , 2015 , 14, 467-78	5.6	77
579	Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: Dechloridation, detoxicity, and a new superoxide radical model study. <i>Chemical Engineering Journal</i> , 2018 , 332, 737-748	14.7	76

578	Label-free aptamer-based electrochemical impedance biosensor for 17Eestradiol. <i>Analyst, The</i> , 2012 , 137, 819-22	5	75
577	Concentrations, profiles and gasparticle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air of Beijing, China. <i>Atmospheric Environment</i> , 2008 , 42, 2037-2047	5.3	75
576	Determination of polybrominated diphenyl ethers in soil from e-waste recycling site. <i>Talanta</i> , 2006 , 70, 88-90	6.2	75
575	Magnetic metal-organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Chemical Communications</i> , 2015 , 51, 8785-8	5.8	74
574	Perfluorinated compounds in seafood from coastal areas in China. <i>Environment International</i> , 2012 , 42, 67-71	12.9	73
573	Separation of polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzo-furans in environmental samples using silica gel and florisil fractionation chromatography. <i>Analytica Chimica Acta</i> , 2006 , 557, 314-320	6.6	72
572	Facile Synthesis of N-Doped Carbon Dots as a New Matrix for Detection of Hydroxy-Polycyclic Aromatic Hydrocarbons by Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. <i>ACS Applied Materials & Description</i> , 8, 12976-84	9.5	72
571	Protein-Metal Organic Framework Hybrid Composites with Intrinsic Peroxidase-like Activity as a Colorimetric Biosensing Platform. <i>ACS Applied Materials & Discrete Materials & Colorimetric Biosensing Platform</i> . <i>ACS Applied Materials & Discrete Materials & Discr</i>	9.5	72
570	Polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in surface dust at an E-waste processing site in Southeast China. <i>Environmental Science & Environmental Scienc</i>	10.3	71
569	Chemical investigation on Sijunzi decoction and its two major herbs Panax ginseng and Glycyrrhiza uralensis by LC/MS/MS. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2006 , 41, 1642-7	3.5	71
568	Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. <i>Science of the Total Environment</i> , 2020 , 717, 135187	10.2	71
567	Novel composites of multifunctional FeO@Au nanofibers for highly efficient glycoprotein imprinting. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1044-1051	7.3	70
566	Triclosan determination in water related to wastewater treatment. <i>Talanta</i> , 2007 , 72, 1650-4	6.2	70
565	Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2006 , 20, 1755-60	2.2	70
564	Liquid chromatography lectrospray ionization mass spectrometry for metabolism and pharmacokinetic studies of ginsenoside Rg3. <i>Analytica Chimica Acta</i> , 2003 , 492, 283-293	6.6	70
563	Determination of adenosine nucleotides in cultured cells by ion-pairing liquid chromatography-electrospray ionization mass spectrometry. <i>Analytical Biochemistry</i> , 2004 , 325, 77-84	3.1	69
562	Increased expression of EIF5A2, via hypoxia or gene amplification, contributes to metastasis and angiogenesis of esophageal squamous cell carcinoma. <i>Gastroenterology</i> , 2014 , 146, 1701-13.e9	13.3	68
561	Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: potential role of transferrin in cadmium toxicity. <i>Aquatic Toxicology</i> , 2006 , 78, 127-35	5.1	68

(2001-2019)

560	Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. <i>Mass Spectrometry Reviews</i> , 2019 , 38, 22-33	11	67	
559	Photocatalytic degradation of clofibric acid by g-CN/P25 composites under simulated sunlight irradiation: The significant effects of reactive species. <i>Chemosphere</i> , 2017 , 172, 193-200	8.4	66	
558	Metabonomics study on the effects of the ginsenoside Rg3 in a beta-cyclodextrin-based formulation on tumor-bearing rats by a fully automatic hydrophilic interaction/reversed-phase column-switching HPLC-ESI-MS approach. <i>Analytical Chemistry</i> , 2008 , 80, 4680-8	7.8	66	
557	Spectrometric studies of cytotoxic protoberberine alkaloids binding to double-stranded DNA. <i>Bioorganic and Medicinal Chemistry</i> , 2005 , 13, 1859-66	3.4	66	
556	Pregnancy-induced metabolic phenotype variations in maternal plasma. <i>Journal of Proteome Research</i> , 2014 , 13, 1527-36	5.6	65	
555	GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. <i>Talanta</i> , 2010 , 83, 262-8	6.2	65	
554	Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. Journal of Hazardous Materials, 2009 , 164, 26-31	12.8	65	
553	SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. <i>Gastroenterology</i> , 2016 , 151, 945-960.e6	13.3	65	
552	Analysis of flavors and fragrances by HPLC with FeO@GO magnetic nanocomposite as the adsorbent. <i>Talanta</i> , 2017 , 166, 262-267	6.2	64	
551	Core-Shell Structured Magnetic Covalent Organic Framework Nanocomposites for Triclosan and Triclocarban Adsorption. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 22492-22500	9.5	64	
550	Defect-Abundant Covalent Triazine Frameworks as Sunlight-Driven Self-Cleaning Adsorbents for Volatile Aromatic Pollutants in Water. <i>Environmental Science & Environmental Sci</i>	10.3	64	
549	New evidence for toxicity of polybrominated diphenyl ethers: DNA adduct formation from quinone metabolites. <i>Environmental Science & Environmental Sci</i>	10.3	64	
548	High-performance liquid chromatography coupled with tandem mass spectrometry applied for metabolic study of ginsenoside Rb1 on rat. <i>Analytical Biochemistry</i> , 2006 , 352, 87-96	3.1	64	
547	Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6927-E6936	11.5	64	
546	Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. <i>Nanomaterials</i> , 2017 , 7,	5.4	63	
545	Liquid chromatography/mass spectrometric analysis of rat samples for in vivo metabolism and pharmacokinetic studies of ginsenoside Rh2. <i>Rapid Communications in Mass Spectrometry</i> , 2005 , 19, 354	49 -5 4	62	
544	Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a real-ambient PM exposure system in Shijiazhuang, China. <i>Environmental Pollution</i> , 2019 , 248, 874-887	9.3	61	
543	Simultaneous determination of Ziagen and its phosphorylated metabolites by ion-pairing high-performance liquid chromatography-tandem mass spectrometry. <i>Biomedical Applications</i> , 2001 , 754, 285-95		61	

542	Determination of polybrominated diphenyl ethers in freshwater fishes from a river polluted by e-wastes. <i>Talanta</i> , 2007 , 72, 1644-9	6.2	60
541	Occurrence of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls pollution in sediments from the Haihe River and Dagu Drainage River in Tianjin City, China. <i>Chemosphere</i> , 2007 , 68, 1772-8	8.4	60
540	Direct analysis of alkaloid profiling in plant tissue by using matrix-assisted laser desorption/ionization mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2007 , 42, 58-69	2.2	59
539	Synthesis, DNA-binding affinities, and binding mode of berberine dimers. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 25-32	3.4	58
538	Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study. <i>Scientific Reports</i> , 2016 , 6, 21699	4.9	58
537	statTarget: A streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. <i>Analytica Chimica Acta</i> , 2018 , 1036, 66-72	6.6	57
536	Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols. <i>Luminescence</i> , 2014 , 29, 722-7	2.5	57
535	Integration of Metabolomics and Lipidomics Reveals Metabolic Mechanisms of Triclosan-Induced Toxicity in Human Hepatocytes. <i>Environmental Science & Environmental Science & E</i>	10.3	55
534	Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis. <i>Science of the Total Environment</i> , 2017 , 592, 357-365	10.2	54
533	A national survey of polybrominated diphenyl ethers (PBDEs) and indicator polychlorinated biphenyls (PCBs) in Chinese mothers' milk. <i>Chemosphere</i> , 2011 , 84, 625-33	8.4	54
532	Coupling of acetonitrile deproteinization and salting-out extraction with acetonitrile stacking in chiral capillary electrophoresis for the determination of warfarin enantiomers. <i>Journal of Chromatography A</i> , 2011 , 1218, 4045-51	4.5	52
531	Detection of Ag(+) using graphite carbon nitride nanosheets based on fluorescence quenching. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016 , 169, 122-7	4.4	51
530	Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediated amplification. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 612-7	11.8	51
529	Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. <i>Chemosphere</i> , 2013 , 92, 1498-505	8.4	51
528	Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 11132-8	5.7	51
527	Synthesis of linked berberine dimers and their remarkably enhanced DNA-binding affinities. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2005 , 15, 2689-92	2.9	51
526	Concentrations, profiles, and emission factors of unintentionally produced persistent organic pollutants in fly ash from coking processes. <i>Journal of Hazardous Materials</i> , 2013 , 261, 421-6	12.8	50
525	Analysis of Rhizoma Polygoni Cuspidati by HPLC and HPLC-ESI/MS. <i>Phytochemical Analysis</i> , 2007 , 18, 387-92	3.4	50

524	Investigation of the metabolism and reductive activation of carcinogenic aristolochic acids in rats. Drug Metabolism and Disposition, 2007 , 35, 866-74	4	50
523	Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. <i>Luminescence</i> , 2018 , 33, 174-180	2.5	49
522	Mesoporous graphitic carbon nitride@NiCoO nanocomposite as a solid phase microextraction coating for sensitive determination of environmental pollutants in human serum samples. <i>Chemical Communications</i> , 2019 , 55, 10019-10022	5.8	49
521	Determination of atrazine in water at low- and sub-parts-per-trillion levels by using solid-phase extraction and gas chromatography/high-resolution mass spectrometry. <i>Analytical Chemistry</i> , 1993 , 65, 21-26	7.8	49
520	MALDI-MS Imaging Reveals Asymmetric Spatial Distribution of Lipid Metabolites from Bisphenol S-Induced Nephrotoxicity. <i>Analytical Chemistry</i> , 2018 , 90, 3196-3204	7.8	48
519	Removal and metabolism of triclosan by three different microalgal species in aquatic environment. Journal of Hazardous Materials, 2018 , 342, 643-650	12.8	48
518	Fabrication of nanoscale graphitic carbon nitride/copper oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of polycyclic aromatic hydrocarbons. <i>Journal of Chromatography A</i> , 2018 , 1570, 47-55	4.5	48
517	A sensitivity enhanced high-performance liquid chromatography fluorescence method for the detection of nephrotoxic and carcinogenic aristolochic acid in herbal medicines. <i>Journal of Chromatography A</i> , 2007 , 1164, 113-9	4.5	48
516	Determination of malachite green and leucomalachite green in edible goldfish muscle by liquid chromatography-ion trap mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2006 , 843, 247-51	3.2	48
515	Supramolecularly imprinted polymeric solid phase microextraction coatings for synergetic recognition nitrophenols and bisphenol A. <i>Journal of Hazardous Materials</i> , 2019 , 368, 358-364	12.8	47
514	Study on noncovalent complexes of cytotoxic protoberberine alkaloids with double-stranded DNA by using electrospray ionization mass spectrometry. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2004 , 14, 4955-9	2.9	47
513	Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. <i>Mass Spectrometry Reviews</i> , 2018 , 37, 681-696	;11	46
512	Effect of sulfur dioxide on inflammatory and immune regulation in asthmatic rats. <i>Chemosphere</i> , 2014 , 112, 296-304	8.4	46
511	Screening and determination for potential Eglucosidase inhibitors from leaves of Acanthopanax senticosus harms by using UF-LC/MS and ESI-MS(n). <i>Phytochemical Analysis</i> , 2012 , 23, 315-23	3.4	46
510	Quantitative structure-activity relationship models for prediction of the toxicity of polybrominated diphenyl ether congeners. <i>Environmental Science & Environmental Science </i>	10.3	46
509	Gas chromatography/mass spectrometry applied for the analysis of triazine herbicides in environmental waters. <i>Chemosphere</i> , 2003 , 52, 1627-32	8.4	46
508	Metabolomics study of alcohol-induced liver injury and hepatocellular carcinoma xenografts in mice. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2011 , 879, 2369-75	3.2	45
507	An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification. <i>Chemical Communications</i> , 2011 , 47, 9069-71	5.8	44

506	Enhanced detection of early hepatocellular carcinoma by serum SELDI-TOF proteomic signature combined with alpha-fetoprotein marker. <i>Annals of Surgical Oncology</i> , 2010 , 17, 2518-25	3.1	44
505	Multivalent antibiotics via metal complexes: potent divalent vancomycins against vancomycin-resistant enterococci. <i>Journal of Medicinal Chemistry</i> , 2003 , 46, 4904-9	8.3	44
504	Persistent Organic Pollutants as Risk Factors for Obesity and Diabetes. <i>Current Diabetes Reports</i> , 2017 , 17, 132	5.6	43
503	A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. <i>Journal of Clinical Investigation</i> , 2020 , 130, 438-450	15.9	43
502	Graphene oxide-SiO nanocomposite as the adsorbent for extraction and preconcentration of plant hormones for HPLC analysis. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2017 , 1046, 58-64	3.2	42
501	Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 358-64	11.8	42
500	Synthesis and photophysical studies of chiral helical macrocyclic scaffolds via coordination-driven self-assembly of 1,8,9,16-tetraethynyltetraphenylene. formation of monometallic platinum(II) and dimetallic platinum(II)-ruthenium(II) complexes. <i>Journal of the American Chemical Society</i> , 2010 ,	16.4	42
499	Determination of glucosinolates in traditional Chinese herbs by high-performance liquid chromatography and electrospray ionization mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 386, 2225-32	4.4	42
498	Fate and mass balance of triclosan and its degradation products: Comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion. <i>Journal of Hazardous Materials</i> , 2017 , 323, 329-340	12.8	41
497	Beyond glucose: metabolic shifts in responses to the effects of the oral glucose tolerance test and the high-fructose diet in rats. <i>Molecular BioSystems</i> , 2011 , 7, 1537-48		41
496	Signal-on electrochemiluminescent biosensor for ATP based on the recombination of aptamer chip. <i>Chemical Communications</i> , 2011 , 47, 8064-6	5.8	41
495	PCDD/F and dioxin-like PCB in Hong Kong air in relation to their regional transport in the Pearl River Delta region. <i>Chemosphere</i> , 2008 , 71, 211-8	8.4	39
494	Gas chromatography/ion trap mass spectrometry applied for the determination of polybrominated diphenyl ethers in soil. <i>Rapid Communications in Mass Spectrometry</i> , 2005 , 19, 83-9	2.2	39
493	Gas chromatography/ion trap mass spectrometry applied for the analysis of triazine herbicides in environmental waters by an isotope dilution technique. <i>Analytica Chimica Acta</i> , 2004 , 503, 263-270	6.6	38
492	A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins. <i>Journal of Chromatography A</i> , 2017 , 1498, 90-98	4.5	37
491	Free and total urinary phthalate metabolite concentrations among pregnant women from the Healthy Baby Cohort (HBC), China. <i>Environment International</i> , 2016 , 88, 67-73	12.9	37
490	A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light. <i>Environmental Science: Nano</i> , 2018 , 5, 2325-2336	7.1	37
489	Newborn screening of phenylketonuria using direct analysis in real time (DART) mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 3159-64	4.4	37

488	Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. <i>Chemical Communications</i> , 2012 , 48, 6562-4	5.8	37
487	Effects of chronic tramadol exposure on the zebrafish brain: a proteomic study. <i>Journal of Proteomics</i> , 2012 , 75, 3351-64	3.9	37
486	Development of extraction methods for the analysis of perfluorinated compounds in human hair and nail by high performance liquid chromatography tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1219, 54-60	4.5	37
485	Determination of triclosan metabolites by using in-source fragmentation from high-performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 1828-34	2.2	37
484	Investigation of levels and fate of triclosan in environmental waters from the analysis of gas chromatography coupled with ion trap mass spectrometry. <i>Chemosphere</i> , 2008 , 73, S13-7	8.4	37
483	Differentiation and identification of ginsenoside isomers by electrospray ionization tandem mass spectrometry. <i>Analytica Chimica Acta</i> , 2005 , 531, 69-77	6.6	37
482	A magnetic covalent organic framework as an adsorbent and a new matrix for enrichment and rapid determination of PAHs and their derivatives in PM by surface-assisted laser desorption/ionization-time of flight-mass spectrometry. <i>Chemical Communications</i> , 2019 , 55, 3745-3748	5.8 3	36
481	Analysis of adenosine phosphates in HepG-2 cell by a HPLC-ESI-MS system with porous graphitic carbon as stationary phase. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2009 , 877, 2019-24	3.2	36
480	Liquid chromatography/mass spectrometry for metabonomics investigation of the biochemical effects induced by aristolochic acid in rats: the use of information-dependent acquisition for biomarker identification. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 873-80	2.2	36
479	Simultaneous determination of bisphenols, benzophenones and parabens in human urine by using UHPLC-TQMS. <i>Chinese Chemical Letters</i> , 2018 , 29, 102-106	8.1	35
478	Dynamic eicosanoid responses upon different inhibitor and combination treatments on the arachidonic acid metabolic network. <i>Molecular BioSystems</i> , 2012 , 8, 1585-94		35
477	Nitrogen and Sulfur Co-doped Carbon-Dot-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Imaging for Profiling Bisphenol S Distribution in Mouse Tissues. <i>Analytical Chemistry</i> , 2018 , 90, 10872-10880	7.8	34
476	Metabolite profiling of plasma and urine from rats with TNBS-induced acute colitis using UPLC-ESI-QTOF-MS-based metabonomicsa pilot study. <i>FEBS Journal</i> , 2012 , 279, 2322-38	5.7	34
475	Insights into the synergetic mechanism of a combined vis-RGO/TiO/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products. <i>Chemosphere</i> , 2019 , 216, 341-351	8.4	34
474	NAD tagSeq reveals that NAD-capped RNAs are mostly produced from a large number of protein-coding genes in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12072-12077	11.5	33
473	GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 11387-400	5.1	33
472	Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test. <i>Lab on A Chip</i> , 2019 , 19, 2915-2924	7.2	33
471	Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation from Alzheimer's disease in CRND8 mice. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 5105-17	4.4	33

470	Rapid screening method for intact glucosinolates in Chinese medicinal herbs by using liquid chromatography coupled with electrospray ionization ion trap mass spectrometry in negative ion mode. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 2825-34	2.2	33
469	Identification of a new Irgarol-1051 related s-triazine species in coastal waters. <i>Environmental Pollution</i> , 2005 , 136, 221-30	9.3	33
468	Liquid-Solid Extraction and Fast Atom Bombardment High-Resolution Mass Spectrometry for the Determination of Hydroxyatrazine in Water at Low-ppt Levels. <i>Analytical Chemistry</i> , 1994 , 66, 4202-4209	97.8	33
467	Investigation of the interaction between the fate of antibiotics in aquafarms and their level in the environment. <i>Journal of Environmental Management</i> , 2018 , 207, 219-229	7.9	33
466	Mass Spectrometry-Based Metabolomics Reveals Occupational Exposure to Per- and Polyfluoroalkyl Substances Relates to Oxidative Stress, Fatty Acid Exposure to Per- and Kidney Injury in a Manufactory in China. <i>Environmental Science & Examp; Technology</i> , 2019 , 53, 9800-9809	10.3	32
465	Exposure Assessment of Bisphenols in Chinese Women during Pregnancy: A Longitudinal Study. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	32
464	PFOA and PFOS promote diabetic renal injury in vitro by impairing the metabolisms of amino acids and purines. <i>Science of the Total Environment</i> , 2019 , 676, 72-86	10.2	32
463	Human placental transfer of perfluoroalkyl acid precursors: Levels and profiles in paired maternal and cord serum. <i>Chemosphere</i> , 2016 , 144, 1631-8	8.4	32
462	Prenatal exposure to phthalates and neurocognitive development in children at two years of age. <i>Environment International</i> , 2019 , 131, 105023	12.9	32
461	Liquid chromatography/mass spectrometry method for determination of perfluorooctane sulfonyl fluoride upon derivatization with benzylamine. <i>Analytical Chemistry</i> , 2011 , 83, 5822-6	7.8	32
460	Alkaloid profiling in crude and processed Strychnos nux-vomica seeds by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007 , 45, 430-6	3.5	32
459	Proteomic analysis of chromium cytotoxicity in cultured rat lung epithelial cells. <i>Proteomics</i> , 2008 , 8, 2420-9	4.8	32
458	Separation of catecholamines by microchip electrophoresis with a simple integrated laser-induced fluorescence detector. <i>Analytica Chimica Acta</i> , 2006 , 565, 183-189	6.6	32
457	Identification of indicator congeners and evaluation of emission pattern of polychlorinated naphthalenes in industrial stack gas emissions by statistical analyses. <i>Chemosphere</i> , 2015 , 118, 194-200	8.4	31
456	Zeolitic imidazolate framework nanocrystals for enrichment and direct detection of environmental pollutants by negative ion surface-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>RSC Advances</i> , 2016 , 6, 23790-23793	3.7	31
455	Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2016 , 1026, 263-271	3.2	31
454	Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil. <i>TrAC - Trends in Analytical Chemistry</i> , 2017 , 96, 201-211	14.6	31
453	Combination of beta-elimination and liquid chromatography/quadrupole time-of-flight mass spectrometry for the determination of O-glycosylation sites. <i>Talanta</i> , 2009 , 78, 358-63	6.2	31

452	Liquid chromatography-tandem mass spectrometry analysis of the DNA adducts of aristolochic acids. <i>Journal of the American Society for Mass Spectrometry</i> , 2007 , 18, 642-50	3.5	31
451	Dioxin analysis in China. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 46, 178-188	14.6	30
450	Laser desorption/ionization on the layer of graphene nanoparticles coupled with mass spectrometry for characterization of polymers. <i>Chemical Communications</i> , 2011 , 47, 12807-9	5.8	30
449	Formation of dioxins from triclosan with active chlorine: A potential risk assessment. <i>Journal of Hazardous Materials</i> , 2019 , 367, 128-136	12.8	30
448	Mesoporous graphitic carbon nitride as an efficient sorbent for extraction of sulfonamides prior to HPLC analysis. <i>Mikrochimica Acta</i> , 2019 , 186, 279	5.8	29
447	PAHs and heavy metals in the surrounding soil of a cement plant Co-Processing hazardous waste. <i>Chemosphere</i> , 2018 , 210, 247-256	8.4	29
446	Surface-assisted laser desorption/ionization mass spectrometric detection of biomolecules by using functional single-walled carbon nanohorns as the matrix. <i>Chemistry - A European Journal</i> , 2013 , 19, 102-8	4.8	29
445	Comprehensive Analysis of Acylcarnitine Species in db/db Mouse Using a Novel Method of High-Resolution Parallel Reaction Monitoring Reveals Widespread Metabolic Dysfunction Induced by Diabetes. <i>Analytical Chemistry</i> , 2017 , 89, 10368-10375	7.8	29
444	Suppression of matrix ions by N-phosphorylation labeling using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. <i>Chemical Communications</i> , 2012 , 48, 10198-200	5.8	29
443	Study on the compositional differences between transgenic and non-transgenic papaya (Carica papaya L.). <i>Journal of Food Composition and Analysis</i> , 2010 , 23, 640-647	4.1	29
442	Quality evaluation of Evodia rutaecarpa (Juss.) Benth by high performance liquid chromatography with photodiode-array detection. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2008 , 48, 1230-6	3.5	29
441	Simultaneous quantitative cassette analysis of drugs and detection of their metabolites by high performance liquid chromatography/ion trap mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2000 , 14, 1637-43	2.2	29
440	In Situ Detection and Imaging of PFOS in Mouse Kidney by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. <i>Analytical Chemistry</i> , 2019 , 91, 8783-8788	7.8	28
439	Sodium doping and 3D honeycomb nanoarchitecture: Key features of covalent triazine-based frameworks (CTF) organocatalyst for enhanced solar-driven advanced oxidation processes. <i>Applied Catalysis B: Environmental</i> , 2019 , 257, 117915	21.8	28
438	Ultrahigh resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed region in two animal models. <i>Talanta</i> , 2014 , 118, 45-53	6.2	28
437	Metabolomic analysis of liver and skeletal muscle tissues in C57BL/6J and DBA/2J mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. <i>Molecular BioSystems</i> , 2011 , 7, 1956-65		28
436	Prenatal exposure to bisphenol A and its alternatives and child neurodevelopment at 2 years. Journal of Hazardous Materials, 2020 , 388, 121774	12.8	28
435	Water soluble and insoluble components of PM and their functional cardiotoxicities on neonatal rat cardiomyocytes in vitro. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 168, 378-387	7	28

434	Synthesis and characterization of vinyl-functionalized magnetic nanofibers for protein imprinting. <i>Chemical Communications</i> , 2015 , 51, 202-5	5.8	27
433	Metabolic profiling on the effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in MCF-7læells. <i>Chemosphere</i> , 2018 , 192, 297-304	8.4	27
432	Saponins and Flavonoids from Adzuki Bean (L.) Ameliorate High-Fat Diet-Induced Obesity in ICR Mice. <i>Frontiers in Pharmacology</i> , 2017 , 8, 687	5.6	27
43 ¹	A novel method of liquid chromatography-tandem mass spectrometry combined with chemical derivatization for the determination of ribonucleosides in urine. <i>Analytica Chimica Acta</i> , 2015 , 864, 30-8	6.6	27
430	Site-specific binding of chelerythrine and sanguinarine to single pyrimidine bulges in hairpin DNA. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 392, 709-16	4.4	27
429	Aristolochic acid induced changes in the metabolic profile of rat urine. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2008 , 46, 757-62	3.5	27
428	Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. <i>Rapid Communications in Mass Spectrometry</i> , 2016 , 30, 533-42	2.2	27
427	Nine phthalate metabolites in human urine for the comparison of health risk between population groups with different water consumptions. <i>Science of the Total Environment</i> , 2019 , 649, 1532-1540	10.2	27
426	Parabens exposure in early pregnancy and gestational diabetes mellitus. <i>Environment International</i> , 2019 , 126, 468-475	12.9	26
425	Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China. <i>Journal of Hazardous Materials</i> , 2018 , 357, 376-383	12.8	26
424	Differentiation of herbs linked to "Chinese herb nephropathy" from the liquid chromatographic determination of aristolochic acids. <i>Analytica Chimica Acta</i> , 2006 , 576, 112-6	6.6	26
423	Bisphenol S induced epigenetic and transcriptional changes in human breast cancer cell line MCF-7. <i>Environmental Pollution</i> , 2019 , 246, 697-703	9.3	26
422	Chiral molecularly imprinted polymeric stir bar sorptive extraction for naproxen enantiomer detection in PPCPs. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122251	12.8	25
421	Simultaneous determination of eighteen nitro-polyaromatic hydrocarbons in PM by atmospheric pressure gas chromatography-tandem mass spectrometry. <i>Chemosphere</i> , 2018 , 198, 303-310	8.4	25
420	Liquid chromatography-mass spectrometry-based metabolomics and lipidomics reveal toxicological mechanisms of bisphenol F in breast cancer xenografts. <i>Journal of Hazardous Materials</i> , 2018 , 358, 503-5	5 07 8	25
419	Bisphenol A and bisphenol S exposures during pregnancy and gestational age - A longitudinal study in China. <i>Chemosphere</i> , 2019 , 237, 124426	8.4	25
418	Molecularly imprinted fluorescent and colorimetric sensor based on TiO@Cu(OH) nanoparticle autocatalysis for protein recognition. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1256-1262	7.3	25
417	Chromatographic fingerprint study on Evodia rutaecarpa (Juss.) Benth by HPLC/DAD/ESI-MS(n) technique. <i>Journal of Separation Science</i> , 2010 , 33, 2258-65	3.4	25

(2018-2010)

416	aristolochic acid in rats: the plasma metabolome. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 1312-8	2.2	25	
415	Stacking and separation of urinary porphyrins in capillary electrophoresis: optimization of concentration efficiency and resolution. <i>Talanta</i> , 2008 , 77, 331-9	6.2	25	
414	Analysis of volatile components of Curcuma sichuanensis X. X. Chen by gas chromatography-mass spectrometry. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007 , 43, 440-4	3.5	25	
413	An end-channel amperometric detector for microchip capillary electrophoresis. <i>Talanta</i> , 2004 , 64, 338-4	4 6.2	25	
412	Herbicide trace analysis by high-resolution fast atom bombardment mass spectrometry: quantification of low parts per trillion levels of atrazine in water. <i>Analytical Chemistry</i> , 1993 , 65, 2372-23	37 8	25	
411	Facile preparation of reduced graphene oxide/ZnFeO nanocomposite as magnetic sorbents for enrichment of estrogens. <i>Talanta</i> , 2020 , 208, 120440	6.2	25	
410	Prenatal exposure to benzophenones, parabens and triclosan and neurocognitive development at 2 years. <i>Environment International</i> , 2019 , 126, 413-421	12.9	24	
409	Exposure to benzophenones, parabens and triclosan among pregnant women in different trimesters. <i>Science of the Total Environment</i> , 2017 , 607-608, 578-585	10.2	24	
408	Analysis of aristolochic acids by CE-MS with carboxymethyl chitosan-coated capillary. <i>Electrophoresis</i> , 2009 , 30, 1783-9	3.6	24	
407	Quantification of aristolochic acid-derived DNA adducts in rat kidney and liver by using liquid chromatography-electrospray ionization mass spectrometry. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2008 , 646, 17-24	3.3	24	
406	Capillary liquid chromatographic-high-resolution mass spectrometric analysis of ribonucleotides. <i>Journal of Chromatography A</i> , 2002 , 976, 135-43	4.5	24	
405	Mass spectrometry-based metabolomics reveals the mechanism of ambient fine particulate matter and its components on energy metabolic reprogramming in BEAS-2B cells. <i>Science of the Total Environment</i> , 2019 , 651, 3139-3150	10.2	24	
404	Consequential fate of bisphenol-attached PVC microplastics in water and simulated intestinal fluids. <i>Environmental Science and Ecotechnology</i> , 2020 , 2, 100027	7.4	24	
403	Study of BDE-47 induced Parkinson's disease-like metabolic changes in C57BL/6 mice by integrated metabolomic, lipidomic and proteomic analysis. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120738	12.8	23	
402	Exposure to Bisphenol a Substitutes and Gestational Diabetes Mellitus: A Prospective Cohort Study in China. <i>Frontiers in Endocrinology</i> , 2019 , 10, 262	5.7	23	
401	Higher-generation type III-B rotaxane dendrimers with controlling particle size in three-dimensional molecular switching. <i>Nature Communications</i> , 2018 , 9, 497	17.4	23	
400	Investigation on fragmentation pathways of bisphenols by using electrospray ionization Orbitrap mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2016 , 30, 1901-13	2.2	23	
399	The brominated flame retardant BDE 47 upregulates purine metabolism and mitochondrial respiration to promote adipocyte differentiation. <i>Science of the Total Environment</i> , 2018 , 644, 1312-1323	2 ^{10.2}	23	

398	A selectively fluorescein-based colorimetric probe for detecting copper(II) ion. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2014 , 122, 731-6	4.4	23
397	N-phosphorylation labeling for analysis of twenty natural amino acids and small peptides by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Analyst, The</i> , 2013 , 138, 2632-9	5	23
396	Airborne PCDD/Fs in two e-waste recycling regions after stricter environmental regulations. <i>Journal of Environmental Sciences</i> , 2017 , 62, 3-10	6.4	23
395	Dynamic pH junction-sweeping for on-line focusing of dipeptides in capillary electrophoresis with laser-induced fluorescence detection. <i>Analyst, The</i> , 2011 , 136, 1852-8	5	23
394	Effect of tanshinone IIA on the noncovalent interaction between warfarin and human serum albumin studied by electrospray ionization mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2008 , 19, 1568-75	3.5	23
393	Contamination profiles and potential health risks of organophosphate flame retardants in PM from Guangzhou and Taiyuan, China. <i>Environment International</i> , 2020 , 134, 105343	12.9	23
392	Determination of PM-bound polyaromatic hydrocarbons and their hydroxylated derivatives by atmospheric pressure gas chromatography-tandem mass spectrometry. <i>Talanta</i> , 2019 , 195, 757-763	6.2	23
391	Synergistic Effect of Metal-Organic Framework/Gallic Acid in Enhanced Laser Desorption/Ionization Mass Spectrometry. <i>ACS Applied Materials & Spectrometry</i> , 11, 38255-38264	9.5	22
390	PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludge. <i>Waste Management</i> , 2020 , 106, 110-119	8.6	22
389	Metabolomics studies on db/db diabetic mice in skeletal muscle reveal effective clearance of overloaded intermediates by exercise. <i>Analytica Chimica Acta</i> , 2018 , 1037, 130-139	6.6	22
388	CAB39L elicited an anti-Warburg effect via a LKB1-AMPK-PGC1\(\frac{1}{2}\)xis to inhibit gastric tumorigenesis. <i>Oncogene</i> , 2018 , 37, 6383-6398	9.2	22
387	A selectively rhodamine-based colorimetric probe for detecting copper(II) ion. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2014 , 132, 191-7	4.4	22
386	The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonate-washed membrane standard. <i>Proteomics</i> , 2010 , 10, 4142-8	4.8	22
385	Study of the phase I and phase II metabolism of a mixture containing multiple tanshinones using liquid chromatography/tandem mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2007 , 21, 2992-8	2.2	22
384	One single LC-MS/MS analysis for both phenolic components and tanshinones in Radix Salviae Miltiorrihizae and its medicinal products. <i>Talanta</i> , 2007 , 73, 656-61	6.2	22
383	Plasma phospholipid metabolic profiling and biomarkers of mouse IgA nephropathy. <i>Metabolomics</i> , 2006 , 2, 95-104	4.7	22
382	High-throughput analysis in drug discovery: application of liquid chromatography/ion-trap mass spectrometry for simultaneous cassette analysis of alpha-1a antagonists and their metabolites in mouse plasma. <i>Rapid Communications in Mass Spectrometry</i> , 2001 , 15, 546-50	2.2	22
381	Lipid metabolism disorders contribute to hepatotoxicity of triclosan in mice. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121310	12.8	22

380	Eukaryotic translation initiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma cells. <i>Carcinogenesis</i> , 2017 , 38, 94-104	4.6	21	
379	Magnetic graphene composites as both an adsorbent for sample enrichment and a MALDI-TOF MS matrix for the detection of nitropolycyclic aromatic hydrocarbons in PM2.5. <i>Analyst, The</i> , 2015 , 140, 171	1-6	21	
378	Enantiomeric recognition of amino acid salts by macrocyclic crown ethers derived from enantiomerically pure 1,8,9,16-tetrahydroxytetraphenylenes. <i>Journal of Organic Chemistry</i> , 2013 , 78, 8562-73	4.2	21	
377	A selective carbazole-based fluorescent probe for chromium(III). <i>Analytical Methods</i> , 2013 , 5, 5549	3.2	21	
376	Proteomics investigation on aristolochic acid nephropathy: a case study on rat kidney tissues. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 399, 3431-9	4.4	21	
375	A novel and specific method for the determination of aristolochic acid-derived DNA adducts in exfoliated urothelial cells by using ultra performance liquid chromatography-triple quadrupole mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life	3.2	21	
374	Enantioselective Brlisted base catalyzed [4+2] cycloaddition using novel amino-substituted tetraphenylene derivatives. <i>Tetrahedron</i> , 2010 , 66, 9860-9874	2.4	21	
373	Spacer length and attaching position-dependent binding of synthesized protoberberine dimers to double-stranded DNA. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 4670-6	3.4	21	
372	Purification, electrophoretic behavior, and kinetics of iron release of liver ferritin of Dasyatis akajei. <i>The Protein Journal</i> , 2003 , 22, 61-70		21	
371	Mass-Profile Monitoring in Trace Analysis: Identification of Polychlorodibenzothiophenes in Crab Tissues Collected from the Newark/Raritan Bay system. <i>Environmental Science & Environmental Science </i>	10.3	21	
370	Determination of didealkylatrazine in water by graphitized carbon black extraction followed by gas chromatography-high resolution mass spectrometry. <i>Analytica Chimica Acta</i> , 1995 , 304, 67-73	6.6	21	
369	Determination of Environmental Micro(Nano)Plastics by Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry. <i>Analytical Chemistry</i> , 2020 , 92, 14346-14356	7.8	21	
368	Large-Scale Longitudinal Metabolomics Study Reveals Different Trimester-Specific Alterations of Metabolites in Relation to Gestational Diabetes Mellitus. <i>Journal of Proteome Research</i> , 2019 , 18, 292-3	ი ნ ⁶	21	
367	Interaction of bisphenol A 3,4-quinone metabolite with glutathione and ribonucleosides/deoxyribonucleosides in vitro. <i>Journal of Hazardous Materials</i> , 2017 , 323, 195-202	12.8	20	
366	Indoor airborne particle sources and outdoor haze days effect in urban office areas in Guangzhou. <i>Environmental Research</i> , 2017 , 154, 60-65	7.9	20	
365	Variations, Determinants, and Coexposure Patterns of Personal Care Product Chemicals among Chinese Pregnant Women: A Longitudinal Study. <i>Environmental Science & Environmental Science & Environmenta</i>	46-635	5 ²⁰	
364	Mass Spectrometry for Analysis of Changes during Food Storage and Processing. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 6956-6966	5.7	20	
363	Layer-by-layer fabrication of g-C3N4 coating for headspace solid-phase microextraction of food additives followed by gas chromatography-flame ionization detection. <i>Analytical Methods</i> , 2018 , 10, 323	2 ³ 3 ² 29	20	

362	Highly selective enrichment of phosphopeptides with high-index facets exposed octahedral tin dioxide nanoparticles for mass spectrometric analysis. <i>Talanta</i> , 2014 , 119, 452-7	6.2	20
361	Determination of polychlorinated biphenyls in seawater using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry with the aid of experimental design. <i>Journal of the Brazilian Chemical Society</i> , 2012 , 23, 132-141	1.5	20
360	Iron depletion decreases proliferation and induces apoptosis in a human colonic adenocarcinoma cell line, Caco2. <i>Journal of Inorganic Biochemistry</i> , 2009 , 103, 1074-81	4.2	20
359	Urinary Metabolomics Reveals Alterations of Aromatic Amino Acid Metabolism of Alzheimer's Disease in the Transgenic CRND8 Mice. <i>Current Alzheimer Research</i> , 2016 , 13, 764-76	3	20
358	Repeated Measurements of Paraben Exposure during Pregnancy in Relation to Fetal and Early Childhood Growth. <i>Environmental Science & Early</i> 2019, 53, 422-433	10.3	20
357	Quantitative analysis of nitro-polycyclic aromatic hydrocarbons in PM2.5 samples with graphene as a matrix by MALDI-TOF MS. <i>Analytical Methods</i> , 2015 , 7, 3967-3971	3.2	19
356	Non-targeted metabolomics and lipidomics LC-MS data from maternal plasma of 180 healthy pregnant women. <i>GigaScience</i> , 2015 , 4, 16	7.6	19
355	The cellular effects of PM collected in Chinese Taiyuan and Guangzhou and their associations with polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and hydroxy-PAHs. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 191, 110225	7	19
354	Oligomers matrix-assisted dispersion of high content of carbon nanotubes into monolithic column for online separation and enrichment of proteins from complex biological samples. <i>Analyst, The</i> , 2013 , 138, 5783-90	5	19
353	Biotransformation of ginsenosides Rb1, Rg3 and Rh2 in rat gastrointestinal tracts. <i>Chinese Medicine</i> , 2010 , 5, 19	4.7	19
352	Nucleoside reverse transcriptase inhibitors and their phosphorylated metabolites in human immunodeficiency virus-infected human matrices. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2008 , 868, 1-12	3.2	19
351	Determination of paralytic shellfish toxins in dinoflagellate Alexandrium tamarense by using isotachophoresis/capillary electrophoresis. <i>Journal of Separation Science</i> , 2006 , 29, 399-404	3.4	19
350	MALDI imaging for the localization of saponins in root tissues and rapid differentiation of three Panax herbs. <i>Electrophoresis</i> , 2016 , 37, 1956-66	3.6	19
349	Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinomaltells. <i>Environmental Pollution</i> , 2019 , 246, 45-52	9.3	19
348	Fine particulate matter aggravates intestinal and brain injury and affects bacterial community structure of intestine and feces in Alzheimer's disease transgenic mice. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 192, 110325	7	18
347	Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions. <i>Scientific Reports</i> , 2016 , 6, 21184	4.9	18
346	Integrative Chemical Proteomics-Metabolomics Approach Reveals Acaca/Acacb as Direct Molecular Targets of PFOA. <i>Analytical Chemistry</i> , 2018 , 90, 11092-11098	7.8	18
345	Atmospheric pressure chemical ionization in gas chromatography-mass spectrometry for the analysis of persistent organic pollutants. <i>Trends in Environmental Analytical Chemistry</i> , 2020 , 25, e00076	5 ¹²	18

344	Effects of ambient PM and 9-nitroanthracene on DNA damage and repair, oxidative stress and metabolic enzymes in the lungs of rats. <i>Toxicology Research</i> , 2017 , 6, 654-663	2.6	17
343	Urinary metabolomics revealed arsenic exposure related to metabolic alterations in general Chinese pregnant women. <i>Journal of Chromatography A</i> , 2017 , 1479, 145-152	4.5	17
342	Associations of Trimester-Specific Exposure to Bisphenols with Size at Birth: A Chinese Prenatal Cohort Study. <i>Environmental Health Perspectives</i> , 2019 , 127, 107001	8.4	17
341	A field study of polychlorinated dibenzo-p-dioxins and dibenzofurans formation mechanism in a hazardous waste incinerator: Emission reduction strategies. <i>Journal of Cleaner Production</i> , 2019 , 232, 1018-1027	10.3	17
340	Application of Derivatization in Fatty Acids and Fatty Acyls Detection: Mass Spectrometry-Based Targeted Lipidomics. <i>Small Methods</i> , 2020 , 4, 2000160	12.8	17
339	Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 201, 110827	7	17
338	Mass spectrometry investigation of DNA adduct formation from bisphenol A quinone metabolite and MCF-7 cell DNA. <i>Talanta</i> , 2018 , 182, 583-589	6.2	17
337	Investigation of the reverse effect of Danhong injection on doxorubicin-induced cardiotoxicity in H9c2 cells: Insight by LC-MS based non-targeted metabolomic analysis. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2018 , 152, 264-270	3.5	17
336	Metabolism of bisphenol S in mice after oral administration. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 32, 495	2.2	17
335	The association of repeated measurements of prenatal exposure to triclosan with fetal and early-childhood growth. <i>Environment International</i> , 2018 , 120, 54-62	12.9	17
334	A highly sensitive chemiluminescent metalloimmunoassay for H1N1 influenza virus detection based on a silver nanoparticle label. <i>Chemical Communications</i> , 2013 , 49, 10563-5	5.8	17
333	Pharmacokinetics and metabolite identification of a novel VEGFR-2 and Src dual inhibitor 6-chloro-2-methoxy-N-(2-methoxybenzyl) acridin-9-amine in rats by liquid chromatography tandem mass spectrometry. <i>Talanta</i> , 2012 , 89, 70-6	6.2	17
332	Analysis of hydroxylated polybrominated diphenyl ethers in rat plasma by using ultra performance liquid chromatography-tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2011 , 879, 1086-90	3.2	17
331	Capillary electrophoresis-ion trap mass spectrometry analysis of Ziagen and its phosphorylated metabolites. <i>Electrophoresis</i> , 2003 , 24, 3160-4	3.6	17
330	Large-scale targeted metabolomics method for metabolite profiling of human samples. <i>Analytica Chimica Acta</i> , 2020 , 1125, 144-151	6.6	17
329	Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. <i>Analytica Chimica Acta</i> , 2020 , 1100, 66-74	6.6	17
328	Effects of sub-chronic exposure to atmospheric PM on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats. <i>Toxicology Research</i> , 2018 , 7, 271-282	2.6	16
327	DNA damage and repair, oxidative stress and metabolism biomarker responses in lungs of rats exposed to ambient atmospheric 1-nitropyrene. <i>Environmental Toxicology and Pharmacology</i> , 2017 , 54, 14-20	5.8	16

326	CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Analyst, The,</i> 2015 , 140, 5287-94	5	16
325	Separation and determination of B vitamins and essential amino acids in health drinks by CE-LIF with simultaneous derivatization. <i>Electrophoresis</i> , 2012 , 33, 2424-32	3.6	16
324	LC/MS-based non-targeted metabolomics for the investigation of general toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. <i>International Journal of Mass Spectrometry</i> , 2011 , 301, 29-36	1.9	16
323	Solid-phase extraction-field-amplified sample injection coupled with CE-ESI-MS for online pre-concentration and quantitative analysis of brain-gut peptides. <i>Electrophoresis</i> , 2011 , 32, 2823-9	3.6	16
322	On-line capillary electrophoresis-electrospray ionization mass spectrometry analysis of urinary porphyrins. <i>Electrophoresis</i> , 2009 , 30, 1790-7	3.6	16
321	Preparation and evaluation of the highly cross-linked poly(1-hexadecane-co-trimethylolpropane trimethacrylate) monolithic column for capillary electrochromatography. <i>Electrophoresis</i> , 2009 , 30, 3540) ³ /6	16
320	High performance liquid chromatography-mass spectrometry analysis for rat metabolism and pharmacokinetic studies of lithospermic acid B from danshen. <i>Talanta</i> , 2008 , 75, 1002-7	6.2	16
319	Deficiency Induces Hepatocarcinogenesis by Decreasing Mitochondrial Respiration and Reprogramming Glucose Metabolism. <i>Cancer Research</i> , 2018 , 78, 4471-4481	10.1	16
318	Chronic exposure to tetrabromodiphenyl ether (BDE-47) aggravates hepatic steatosis and liver fibrosis in diet-induced obese mice. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120766	12.8	15
317	Acute exposure to triphenyl phosphate inhibits the proliferation and cardiac differentiation of mouse embryonic stem cells and zebrafish embryos. <i>Journal of Cellular Physiology</i> , 2019 , 234, 21235-212	248	15
316	Paraben Exposure Related To Purine Metabolism and Other Pathways Revealed by Mass Spectrometry-Based Metabolomics. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	15
315	Adsorption isotherms and kinetics for the removal of triclosan and methyl triclosan from wastewater using inactivated dried sludge. <i>Process Biochemistry</i> , 2016 , 51, 1069-1077	4.8	15
314	Quantitative metabolic network profiling of Escherichia coli: An overview of analytical methods for measurement of intracellular metabolites. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 75, 141-150	14.6	15
313	Analysis of azole fungicides in fish muscle tissues: Multi-factor optimization and application to environmental samples. <i>Journal of Hazardous Materials</i> , 2017 , 324, 535-543	12.8	15
312	Characterization and quantification of flavonoids and saponins in adzuki bean (Vigna angularis L.) by HPLC-DAD-ESI-MS analysis. <i>Chemistry Central Journal</i> , 2017 , 11, 93		15
311	In vitro metabolism of hydroxylated polybrominated diphenyl ethers and their inhibitory effects on 17E stradiol metabolism in rat liver microsomes. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 3219-27	5.1	15
310	Simultaneous analysis of strychnine and brucine and their major metabolites by liquid chromatography-electrospray ion trap mass spectrometry. <i>Journal of Analytical Toxicology</i> , 2012 , 36, 171-6	2.9	15
309	Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in waterbird eggs of Hong Kong, China. <i>Chemosphere</i> , 2012 , 86, 242-7	8.4	15

(2020-2007)

308	Chip-based CE coupled to a quadrupole TOF mass spectrometer for the analysis of a glycopeptide. <i>Electrophoresis</i> , 2007 , 28, 1305-11	3.6	15
307	Microbore liquid chromatographic-mass spectrometric determination of atrazine and its major hydroxylated degradate in water at parts-per-trillion levels using electrospray. <i>Journal of Chromatography A</i> , 1996 , 753, 243-251	4.5	15
306	Metabolic and lipidomic characterization of malignant pleural effusion in human lung cancer. Journal of Pharmaceutical and Biomedical Analysis, 2020 , 180, 113069	3.5	15
305	Middle East Respiratory Syndrome Coronavirus ORF8b Accessory Protein Suppresses Type I IFN Expression by Impeding HSP70-Dependent Activation of IRF3 Kinase IKK\(\Pi\) <i>Journal of Immunology</i> , 2020 , 205, 1564-1579	5.3	15
304	Tris(2,4-dibutylphenyl)phosphate: An Unexpected Abundant Toxic Pollutant Found in PM. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	15
303	Prenatal exposure to ambient fine particulate matter induces dysregulations of lipid metabolism in adipose tissue in male offspring. <i>Science of the Total Environment</i> , 2019 , 657, 1389-1397	10.2	15
302	Investigation on Metabolism of Di(2-Ethylhexyl) Phthalate in Different Trimesters of Pregnant Women. <i>Environmental Science & Environmental Science & </i>	10.3	15
301	Triclocarban-induced responses of endogenous and xenobiotic metabolism in human hepatic cells: Toxicity assessment based on nontargeted metabolomics approach. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122475	12.8	14
300	Determination of amino acids in colon cancer cells by using UHPLC-MS/MS and [U-C]-glutamine as the isotope tracer. <i>Talanta</i> , 2017 , 162, 285-292	6.2	14
299	Microwave-assisted 18O-labeling of proteins catalyzed by formic acid. <i>Analytical Chemistry</i> , 2010 , 82, 9122-6	7.8	14
298	A novel pre-column fluorescent derivatization method for the sensitive determination of aristolochic acids in medicinal herbs by high-performance liquid chromatography with fluorescence detection. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2010 , 53, 37-42	3.5	14
297	Identification of four urea adducts of andrographolide in humans. <i>Drug Metabolism Letters</i> , 2008 , 2, 261	-8 1	14
296	Online concentration of aristolochic acid I and II in Chinese medicine preparations by micellar electrokinetic chromatography. <i>Journal of Chromatography A</i> , 2007 , 1167, 120-4	4.5	14
295	Levels of Polychlorodibenzo-p-dioxins and Dibenzofurans in Crab Tissues from the Newark/Raritan Bay System. <i>Environmental Science & Environmental Sci</i>	10.3	14
294	Early-life exposure to endocrine disrupting chemicals associates with childhood obesity. <i>Annals of Pediatric Endocrinology and Metabolism</i> , 2018 , 23, 182-195	2.9	14
293	Trimester-specific, gender-specific, and low-dose effects associated with non-monotonic relationships of bisphenol A on estrone, 17Eestradiol and estriol. <i>Environment International</i> , 2020 , 134, 105304	12.9	14
292	Blood pressure changes during pregnancy in relation to urinary paraben, triclosan and benzophenone concentrations: A repeated measures study. <i>Environment International</i> , 2019 , 122, 185-1	12 .9	14
291	Evaluation and optimization of sample pretreatment for GC/MS-based metabolomics in embryonic zebrafish. <i>Talanta</i> , 2020 , 207, 120260	6.2	14

290	Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. <i>Molecular Biology and Evolution</i> , 2021 , 38, 502-518	8.3	14
289	Evidence of Foodborne Transmission of the Coronavirus (COVID-19) through the Animal Products Food Supply Chain. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	14
288	A spherical covalent-organic framework for enhancing laser desorption/ionization mass spectrometry for small molecule detection. <i>Analyst, The</i> , 2020 , 145, 3125-3130	5	13
287	Elevated excretion of biopyrrin as a new marker for idiopathic Parkinson's disease. <i>Parkinsonism and Related Disorders</i> , 2015 , 21, 1371-2	3.6	13
286	Advances of MALDI-TOF MS in the analysis of traditional Chinese medicines. <i>Topics in Current Chemistry</i> , 2013 , 331, 143-64		13
285	Hippocampal metabolomics reveals 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity associated with ageing in Sprague-Dawley rats. <i>Talanta</i> , 2011 , 85, 1007-12	6.2	13
284	A new method for the analysis of beta(2)-agonists in human urine by pressure-assisted capillary electrochromatography coupled with electrospray ionization-mass spectrometry using a silica-based monolithic column. <i>Talanta</i> , 2010 , 81, 1655-61	6.2	13
283	Nano-LC-MS/MS based proteomics of hepatocellular carcinoma cells compared to Chang liver cells and tanshinone IIA induction. <i>Molecular BioSystems</i> , 2011 , 7, 1728-41		13
282	Method development for the analysis of polybrominated dibenzo-p-dioxins, dibenzofurans and diphenyl ethers in sediment samples. <i>Talanta</i> , 2007 , 72, 668-74	6.2	13
281	Method development for the analysis of polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzo-furans in single extract of sediment samples. <i>Talanta</i> , 2006 , 70, 20-5	6.2	13
280	Highly selective detection of Pd ion in aqueous solutions with rhodamine-based colorimetric and fluorescent chemosensors. <i>Talanta</i> , 2020 , 210, 120634	6.2	13
279	Mass Spectrometry Imaging Combined with Metabolomics Revealing the Proliferative Effect of Environmental Pollutants on Multicellular Tumor Spheroids. <i>Analytical Chemistry</i> , 2020 , 92, 11341-1134.	8 7.8	13
278	Analysis of transcriptional response in zebrafish eleutheroembryos exposed to climbazole: Signaling pathways and potential biomarkers. <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 794-80	3 .8	13
277	Adsorption of phenanthrene and its monohydroxy derivatives on polyvinyl chloride microplastics in aqueous solution: Model fitting and mechanism analysis. <i>Science of the Total Environment</i> , 2021 , 764, 142889	10.2	13
276	Urinary profiling of cis-diol-containing metabolites in rats with bisphenol A exposure by liquid chromatography-mass spectrometry and isotope labeling. <i>Analyst, The</i> , 2016 , 141, 1144-53	5	12
275	Polybrominated diphenyl ethers in combusted residues and soils from an open burning site of electronic wastes. <i>Environmental Earth Sciences</i> , 2013 , 69, 2633-2641	2.9	12
274	Determination of aristolochic acid I in rat urine and plasma by high-performance liquid chromatography with fluorescence detection. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2009 , 877, 995-9	3.2	12
273	A highly sensitive method for detection of protein based on inhibition of Ru(bpy)32+/TPrA electrochemiluminescent system. <i>Electrochimica Acta</i> , 2011 , 56, 6962-6965	6.7	12

272	Cellular Uptake of Few-Layered Black Phosphorus and the Toxicity to an Aquatic Unicellular Organism. <i>Environmental Science & Environmental Science & </i>	10.3	12
271	Association between phthalate exposure and blood pressure during pregnancy. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 189, 109944	7	12
270	Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 170, 495-501	7	12
269	Association of prenatal exposure to organochlorine pesticides and birth size. <i>Science of the Total Environment</i> , 2019 , 654, 678-683	10.2	12
268	Gas chromatography-mass spectrometry based profiling reveals six monoglycerides as markers of used cooking oil. <i>Food Control</i> , 2019 , 96, 494-498	6.2	12
267	Determination of HFRs and OPFRs in PM by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS. <i>Talanta</i> , 2019 , 194, 320-328	6.2	12
266	Arabidopsis DXO1 possesses deNADding and exonuclease activities and its mutation affects defense-related and photosynthetic gene expression. <i>Journal of Integrative Plant Biology</i> , 2020 , 62, 967	-883	12
265	Associations between repeated measures of maternal urinary phthalate metabolites during pregnancy and cord blood glucocorticoids. <i>Environment International</i> , 2018 , 121, 471-479	12.9	12
264	Comparison of different mass spectrometric approaches coupled to gas chromatography for the analysis of organochlorine pesticides in serum samples. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2017 , 1040, 180-185	3.2	11
263	Risk assessment of dietary exposure to PCDD/Fs, DL-PCBs and NDL-PCBs of Hong Kong resident. <i>Science China Chemistry</i> , 2015 , 58, 1082-1088	7.9	11
262	Integration of proteomics and metabolomics reveals promotion of proliferation by exposure of bisphenol S in human breast epithelial MCF-10A cells. <i>Science of the Total Environment</i> , 2020 , 712, 1364!	-10.2 53	11
261	Urinary concentrations of phthalate metabolites associated with changes in clinical hemostatic and hematologic parameters in pregnant women. <i>Environment International</i> , 2018 , 120, 34-42	12.9	11
260	Determinants of exposure levels, metabolism, and health risks of phthalates among pregnant women in Wuhan, China. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 184, 109657	7	11
259	Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa based on liquid chromatography-electrospray ionization-mass spectrometry. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 552-7	5.1	11
258	Glucuronidation of hydroxylated polybrominated diphenyl ethers and their modulation of estrogen UDP-glucuronosyltransferases. <i>Chemosphere</i> , 2012 , 86, 727-34	8.4	11
257	Determination of stimulants and narcotics as well as their in vitro metabolites by online CE-ESI-MS. <i>Electrophoresis</i> , 2011 , 32, 472-8	3.6	11
256	Triclocarban Exposure Exaggerates Spontaneous Colonic Inflammation in Il-10-/- Mice. <i>Toxicological Sciences</i> , 2020 , 174, 92-99	4.4	11
255	Dietary exposure and risk assessment of short-chain chlorinated paraffins in supermarket fresh products in Jinan, China. <i>Chemosphere</i> , 2020 , 244, 125393	8.4	11

254	Pollution emission characteristics, distribution of heavy metals, and particle morphologies in a hazardous waste incinerator processing phenolic waste. <i>Journal of Hazardous Materials</i> , 2020 , 388, 121	757 ^{.8}	11
253	Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125582	12.8	11
252	Effects of Ambient Atmospheric PM, 1-Nitropyrene and 9-Nitroanthracene on DNA Damage and Oxidative Stress in Hearts of Rats. <i>Cardiovascular Toxicology</i> , 2019 , 19, 178-190	3.4	11
251	The detection of melamine base on a turn-on fluorescence of DNA-Ag nanoclusters. <i>Journal of Luminescence</i> , 2017 , 186, 103-108	3.8	10
250	Variations of phthalate exposure and metabolism over three trimesters. <i>Environmental Pollution</i> , 2019 , 251, 137-145	9.3	10
249	Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab. <i>Molecular and Cellular Proteomics</i> , 2020 , 19, 1303-1309	7.6	10
248	Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics. <i>Analytica Chimica Acta</i> , 2020 , 1127, 140-148	6.6	10
247	Association between urinary paraben concentrations and gestational weight gain during pregnancy. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2020 , 30, 845-855	6.7	10
246	Characterization of oncogene-induced metabolic alterations in hepatic cells by using ultrahigh performance liquid chromatography-tandem mass spectrometry. <i>Talanta</i> , 2016 , 152, 119-26	6.2	10
245	MS-Based Metabolomics for the Investigation of Neuro-Metabolic Changes Associated with BDE-47 Exposure in C57BL/6 Mice. <i>Journal of Analysis and Testing</i> , 2017 , 1, 233-244	3.2	10
244	Simultaneous determination of aconitine, mesaconitine, hypaconitine, bulleyaconitine and lappaconitine in human urine by liquid chromatography-electrospray ionization-tandem mass spectrometry. <i>Analytical Methods</i> , 2013 , 5, 4034	3.2	10
243	Quantification of acetylcholine in microdialysate of subcutaneous tissue by hydrophilic interaction chromatography/tandem mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 1497-502	2.2	10
242	Identification and characterization of a new degradation product of Irgarol-1051 in mercuric chloride-catalyzed hydrolysis reaction and in coastal waters. <i>Marine Pollution Bulletin</i> , 2004 , 49, 361-7	6.7	10
241	Analysis of dinitro- and amino-nitro-toluenesulfonic acids in groundwater by solid-phase extraction and liquid chromatography-mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 1828-	.3 { 5·4	10
240	Metabolomics and lipidomics study unveils the impact of polybrominated diphenyl ether-47 on breast cancer mice. <i>Journal of Hazardous Materials</i> , 2020 , 390, 121451	12.8	10
239	Perturbation of Normal Algal Growth by Black Phosphorus Nanosheets: The Role of Degradation. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 35-41	11	10
238	PAH exposure is associated with enhanced risk for pediatric dyslipidemia through serum SOD reduction. <i>Environment International</i> , 2020 , 145, 106132	12.9	10
237	Trends and perspectives in per-and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 133, 116114	14.6	10

236	Seasonal variations and inhalation risk assessment of short-chain chlorinated paraffins in PM of Jinan, China. <i>Environmental Pollution</i> , 2019 , 245, 325-330	9.3	10
235	Maternal urinary benzophenones and infant birth size: Identifying critical windows of exposure. <i>Chemosphere</i> , 2019 , 219, 655-661	8.4	10
234	Profiles, variability, and predictors of urinary benzotriazoles and benzothiazoles in pregnant women from Wuhan, China. <i>Environment International</i> , 2018 , 121, 1279-1288	12.9	10
233	Determination of bisphenol A and bisphenol S in sacked mouse foods by liquid chromatography-tandem mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2018 , 434, 17-	-2 ¹ 2 ⁹	10
232	Role of inducible nitric oxide synthase in endothelium-independent relaxation to raloxifene in rat aorta. <i>British Journal of Pharmacology</i> , 2017 , 174, 718-733	8.6	9
231	Immunotoxic Potential of Bisphenol F Mediated through Lipid Signaling Pathways on Macrophages. <i>Environmental Science & Discours</i> (2019), 53, 11420-11428	10.3	9
230	Evaluation of bisphenol A exposure induced oxidative RNA damage by liquid chromatography-mass spectrometry. <i>Chemosphere</i> , 2019 , 222, 235-242	8.4	9
229	A Fully Integrated Spintip-Based Approach for Sensitive and Quantitative Profiling of Region-Resolved in Vivo Brain Glycoproteome. <i>Analytical Chemistry</i> , 2019 , 91, 9181-9189	7.8	9
228	Metabolism Study of Veratramine Associated with Neurotoxicity by Using HPLC-MSn. <i>Journal of Chromatographic Science</i> , 2015 , 53, 1092-9	1.4	9
227	High-throughput screening of bisphenols using magnetic covalent organic frameworks as a SELDI-TOF-MS probe. <i>Mikrochimica Acta</i> , 2020 , 187, 370	5.8	9
226	Purification and characterization of fibrinolytic enzyme from a bacterium isolated from soil. <i>3 Biotech</i> , 2018 , 8, 90	2.8	9
225	Concentrations of organochlorine pesticides in cord serum of newborns in Wuhan, China. <i>Science of the Total Environment</i> , 2018 , 636, 761-766	10.2	9
224	Characterisation of the metabolism of pogostone in vitro and in vivo using liquid chromatography with mass spectrometry. <i>Phytochemical Analysis</i> , 2014 , 25, 97-105	3.4	9
223	Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry. <i>Analyst, The,</i> 2014 , 139, 5600-4	5	9
222	LC-MS-based metabolomics revealed SLC25A22 as an essential regulator of aspartate-derived amino acids and polyamines in -mutant colorectal cancer. <i>Oncotarget</i> , 2017 , 8, 101333-101344	3.3	9
221	Stable isotope N-phosphorylation labeling for Peptide de novo sequencing and protein quantification based on organic phosphorus chemistry. <i>Analytical Chemistry</i> , 2012 , 84, 10236-44	7.8	9
220	ANALYSIS OF URINARY PORPHYRINS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY-ELECTROSPRAY IONIZATION MASS SPECTROMETRY. <i>Journal of Liquid Chromatography and Related Technologies</i> , 2011 , 34, 1578-1593	1.3	9
219	Identification of amino acid substitutions in avian influenza virus (H5N1) matrix protein 1 by using nanoelectrospray MS and MS/MS. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 312-3	2ð ^{.5}	9

218	Coupling a microchip with electrospray ionization quadrupole time-of-flight mass spectrometer for peptide separation and identification. <i>Electrophoresis</i> , 2008 , 29, 1889-94	3.6	9
217	LC-MS analysis of antifouling agent Irgarol 1051 and its decyclopropylated degradation product in seawater from marinas in Hong Kong. <i>Talanta</i> , 2006 , 70, 91-6	6.2	9
216	Determination of atrazine and its deethylated degradation product in water and sediment by using gas chromatography/ion trap mass spectrometry. <i>International Journal of Environmental Analytical Chemistry</i> , 2005 , 85, 1117-1125	1.8	9
215	Effects of exposure to ambient fine particulate matter on the heart of diet-induced obesity mouse model. <i>Science of the Total Environment</i> , 2020 , 732, 139304	10.2	9
214	Determination of hormones in human urine by ultra-high-performance liquid chromatography/triple-quadrupole mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34 Suppl 1, e8583	2.2	9
213	Evaluation of the splenic injury following exposure of mice to bisphenol S: A mass spectrometry-based lipidomics and imaging analysis. <i>Environment International</i> , 2020 , 135, 105378	12.9	9
212	FeO-assisted laser desorption ionization mass spectrometry for typical metabolite analysis and localization: Influencing factors, mechanisms, and environmental applications. <i>Journal of Hazardous Materials</i> , 2020 , 388, 121817	12.8	9
211	A dual-zwitterion functionalized ultra-hydrophilic metal-organic framework with ingenious synergy for enhanced enrichment of glycopeptides. <i>Chemical Communications</i> , 2019 , 55, 13967-13970	5.8	9
21 0	Facile synthesis of tubular magnetic fluorinated covalent organic frameworks for efficient enrichment of ultratrace polybrominated diphenyl ethers from environmental samples. <i>Talanta</i> , 2021 , 221, 121651	6.2	9
209	Spatially Resolved Metabolomics and Lipidomics Reveal Salinity and Drought-Tolerant Mechanisms of Cottonseeds. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 8028-8037	5.7	9
208	Formation and characterization of glutathione adducts derived from polybrominated diphenyl ethers. <i>Chemosphere</i> , 2015 , 120, 365-70	8.4	8
207	Interaction of 2-(2',4'-bromophenoxyl)-benzoquinone with deoxynucleosides and DNA in vitro. <i>Chemosphere</i> , 2015 , 118, 29-34	8.4	8
206	Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism. <i>Mass Spectrometry Reviews</i> , 2020 ,	11	8
205	Identification of glycerophospholipid fatty acid remodeling by using mass spectrometry imaging in bisphenol S induced mouse liver. <i>Chinese Chemical Letters</i> , 2018 , 29, 1281-1283	8.1	8
204	Comprehensive identification of steroid hormones in human urine based on liquid chromatography-high resolution mass spectrometry. <i>Analytica Chimica Acta</i> , 2019 , 1089, 100-107	6.6	8
203	A mechanistic study on the photodegradation of Irgarol-1051 in natural seawater. <i>Marine Pollution Bulletin</i> , 2009 , 58, 272-9	6.7	8
202	A method to enhance a1 ions and application for peptide sequencing and protein identification. Journal of the American Society for Mass Spectrometry, 2009, 20, 1214-23	3.5	8
201	Sensitivity of different biological responses to accumulation and depuration of butyltins in the neogastropod Thais clavigera: implications for biomonitoring. <i>Ecotoxicology</i> , 2008 , 17, 860-8	2.9	8

(2018-2008)

200	Characterization of the DNA adducts induced by aristolochic acids in oligonucleotides by electrospray ionization tandem mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 3735-42	2.2	8
199	Determination of two intact glucosinolates in vegetables and Chinese herbs. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 827-33	4.4	8
198	Determination of atrazine, deethylatrazine and simazine in water at parts-per-trillion levels using solid-phase extraction and gas chromatography/ion trap mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2003 , 17, 2707-12	2.2	8
197	Convenient detection of HS based on the photothermal effect of Au@Ag nanocubes using a handheld thermometer as readout. <i>Analytica Chimica Acta</i> , 2021 , 1149, 338211	6.6	8
196	Type III-C rotaxane dendrimers: synthesis, dual size modulation and in vivo evaluation. <i>Chemical Communications</i> , 2019 , 55, 13426-13429	5.8	8
195	Interaction of bisphenol A 3, 4-quinone metabolite with human hemoglobin, human serum albumin and cytochrome c in vitro. <i>Chemosphere</i> , 2019 , 220, 930-936	8.4	8
194	Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves. <i>Environmental Pollution</i> , 2020 , 257, 113353	9.3	8
193	Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy. <i>Science Bulletin</i> , 2021 , 66, 578-591	10.6	8
192	Contamination profiles and health impact of benzothiazole and its derivatives in PM in typical Chinese cities. <i>Science of the Total Environment</i> , 2021 , 755, 142617	10.2	8
191	Gas-cycle-assisted headspace solid-phase microextraction coupled with gas chromatography for rapid analysis of organic pollutants. <i>Chemical Communications</i> , 2021 , 57, 8810-8813	5.8	8
190	Determination of intracellular metabolites concentrations in Escherichia coli under nutrition stress using liquid chromatography-tandem mass spectrometry. <i>Talanta</i> , 2018 , 189, 1-7	6.2	8
189	-Phenylenediamine Antioxidants in PM: The Underestimated Urban Air Pollutants. <i>Environmental Science & Environmental Science </i>	10.3	8
188	PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1047, 180-184	3.2	7
187	Determination of benzotriazoles and benzothiazoles in human urine by UHPLC-TQMS. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2017 , 1070, 70-75	3.2	7
186	Evaluation of gas chromatography-atmospheric pressure chemical ionization tandem mass spectrometry as an alternative to gas chromatography tandem mass spectrometry for the determination of polychlorinated biphenyls and polybrominated diphenyl ethers. <i>Chemosphere</i> ,	8.4	7
185	2019 , 225, 288-294 Preparation of Frozen Sections of Multicellular Tumor Spheroids Coated with Ice for Mass Spectrometry Imaging. <i>Analytical Chemistry</i> , 2020 , 92, 7413-7418	7.8	7
184	Prenatal exposure to benzotriazoles and benzothiazoles and cord blood mitochondrial DNA copy number: A prospective investigation. <i>Environment International</i> , 2020 , 143, 105920	12.9	7
183	Dual role of coal fly ash in copper ion adsorption followed by thermal stabilization in a spinel solid solution <i>RSC Advances</i> , 2018 , 8, 8805-8812	3.7	7

182	Photocatalytic transformation of climbazole and 4-chlorophenol formation using a floral array of chromium-substituted magnetite nanoparticles activated with peroxymonosulfate. <i>Environmental Science: Nano</i> , 2019 , 6, 2986-2999	7.1	7
181	Study of metabolic disorders associated with BDE-47 exposure in Drosophila model by MS-based metabolomics. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 184, 109606	7	7
180	Mutations in influenza virus replication and transcription: detection of amino acid substitutions in hemagglutinin of an avian influenza virus (H1N1). <i>FASEB Journal</i> , 2009 , 23, 3377-82	0.9	7
179	Early pregnancy exposure to benzotriazoles and benzothiazoles in relation to gestational diabetes mellitus: A prospective cohort study. <i>Environment International</i> , 2020 , 135, 105360	12.9	7
178	Metabolomics reveals the reproductive abnormality in female zebrafish exposed to environmentally relevant levels of climbazole. <i>Environmental Pollution</i> , 2021 , 275, 116665	9.3	7
177	Breast cancer proliferation and deterioration-associated metabolic heterogeneity changes induced by exposure of bisphenol S, a widespread replacement of bisphenol A. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125391	12.8	7
176	One-pot synthesis of trypsin-based magnetic metal-organic frameworks for highly efficient proteolysis. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 4642-4647	7:3	7
175	New insights into the cellular mechanism of triclosan-induced dermal toxicity from a combined metabolomic and lipidomic approach. <i>Science of the Total Environment</i> , 2021 , 757, 143976	10.2	7
174	Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice. <i>Environmental Pollution</i> , 2021 , 268, 115774	9.3	7
173	Long-term environmental cadmium exposure induced serum metabolic changes related to renal and liver dysfunctions in a female cohort from Southwest China. <i>Science of the Total Environment</i> , 2021 , 798, 149379	10.2	7
172	New Evidence of Rubber-Derived Quinones in Water, Air, and Soil <i>Environmental Science & Environmental Science & Technology</i> , 2022 ,	10.3	7
171	Performance of atmospheric pressure gas chromatography-tandem mass spectrometry for the analysis of organochlorine pesticides in human serum. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 4185-4191	4.4	6
170	Integrated Functional Omics Analysis of Flavonoid-Related Metabolism in Transcript Factor Overexpressed Tomato. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 6776-6787	5.7	6
169	Puffer Fish Gut Microbiota Studies Revealed Unique Bacterial Co-Occurrence Patterns and New Insights on Tetrodotoxin Producers. <i>Marine Drugs</i> , 2020 , 18,	6	6
168	Uptake, Accumulation, and Biomarkers of PM-Associated Organophosphate Flame Retardants in C57BL/6 Mice after Chronic Exposure at Real Environmental Concentrations. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	6
167	Pharmacokinetics and metabolism study of veratramine in mice after oral administration using LC-MS/MS. <i>Biomedical Chromatography</i> , 2016 , 30, 1515-22	1.7	6
166	Poly-l-lysine-based tissue embedding compatible with matrix-assisted laser desorption ionization-mass spectrometry imaging analysis of dry and fragile aristolochia plants. <i>Journal of Chromatography A</i> , 2019 , 1608, 460389	4.5	6
165	Magnetic solid-phase extraction based on a trimethylstearylammonium bromide coated Fe3O4/SiO2 composite for determination of adriamycin hydrochloride in human plasma and urine by HPLC-FLD. <i>Analytical Methods</i> , 2014 , 6, 6736-6744	3.2	6

(2021-2015)

164	6,7-Bismethoxy-2,11-dihydroxytetraphenylene Derived Macrocycles: Synthesis, Structures, and Complexation with Fullerenes. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 2342-6	4.5	6
163	A new liquid chromatographyfluorescence method for determination of perfluorooctanesulphonyl fluoride upon derivatisation with 1-naphthol. <i>International Journal of Environmental Analytical Chemistry</i> , 2014 , 94, 1388-1393	1.8	6
162	Bioaccumulation and debromination of BDE-209 in Japanese medaka (Oryzias Latipes) when continuously exposed to environmental relevant concentrations. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2013 , 48, 1349-55	2.3	6
161	Electrospray ionization tandem mass spectrometric characterization of DNA adducts formed by bromobenzoquinones. <i>Rapid Communications in Mass Spectrometry</i> , 2011 , 25, 2943-50	2.2	6
160	Role of 10-11bp periodicities of eukaryotic DNA sequence in nucleosome positioning. <i>BioSystems</i> , 2011 , 105, 295-9	1.9	6
159	Advances in Technologies and Biological Applications of 18O Labeling Strategies in LC-MS Based Proteomics: An Updated Review. <i>Current Analytical Chemistry</i> , 2012 , 8, 22-34	1.7	6
158	Determination of five nitrobenzoic acids in groundwater by solid-phase extraction and liquid chromatography-mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 387, 2219-25	4.4	6
157	Covalent Organic Framework Nanofilm-Based Laser Desorption/Ionization Mass Spectrometry for 5-Fluorouracil Analysis and Tissue Imaging. <i>Analytical Chemistry</i> , 2021 , 93, 15573-15578	7.8	6
156	Preparation of multivariate zirconia metal-organic frameworks for highly efficient adsorption of endocrine disrupting compounds. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127559	12.8	6
155	Nitrogen-rich carbon nitride as solid-phase microextraction fiber coating for high-efficient pretreatment of polychlorinated biphenyls from environmental samples. <i>Journal of Chromatography A</i> , 2021 , 1659, 462655	4.5	6
154	Controllable Synthesis of Hollow Microtubular Covalent Organic Frameworks as an Enzyme-Immobilized Platform for Enhancing Catalytic Activity. <i>ACS Applied Materials & Materials & Interfaces</i> , 2021 ,	9.5	6
153	Effects of PM exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. <i>Chemosphere</i> , 2020 , 256, 127133	8.4	6
152	Interaction of mercury ion (Hg) with blood and cytotoxicity attenuation by serum albumin binding. Journal of Hazardous Materials, 2021 , 412, 125158	12.8	6
151	Core-shell hollow spheres of type C@MoS for use in surface-assisted laser desorption/ionization time of flight mass spectrometry of small molecules. <i>Mikrochimica Acta</i> , 2019 , 186, 830	5.8	6
150	Simultaneous determination of methionine cycle metabolites, urea cycle intermediates and polyamines in serum, urine and intestinal tissue by using UHPLC-MS/MS. <i>Talanta</i> , 2021 , 224, 121868	6.2	6
149	Metabolic signatures for safety assessment of low-level cadmium exposure on human osteoblast-like cells. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 207, 111257	7	6
148	Synergistic optimization of Liquid Chromatography and Mass Spectrometry parameters on Orbitrap Tribrid mass spectrometer for high efficient data-dependent proteomics. <i>Journal of Mass Spectrometry</i> , 2021 , 56, e4653	2.2	6
147	Thiol functionalized covalent organic framework for highly selective enrichment and detection of mercury by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Analyst, The,</i> 2021 , 146, 2991-2997	5	6

146	Development of universal purification protocols for fibrinolytic enzyme-producing bacilli. <i>CYTA - Journal of Food</i> , 2019 , 17, 112-120	2.3	5
145	Thyroid Cancer "Epidemic": A Socio-Environmental Health Problem Needs Collaborative Efforts. <i>Environmental Science & Environmental </i>	10.3	5
144	Combinatory Data-Independent Acquisition and Parallel Reaction Monitoring Method for Deep Profiling of Gangliosides. <i>Analytical Chemistry</i> , 2020 , 92, 10830-10838	7.8	5
143	Global Metabolomic and Lipidomic Analysis Reveal the Synergistic Effect of Bufalin in Combination with Cinobufagin against HepG2 Cells. <i>Journal of Proteome Research</i> , 2020 , 19, 873-883	5.6	5
142	Reduced carbon nanodots as a novel substrate for direct analysis of bisphenol analogs in surface assisted laser desorption/ionization time of flight mass spectrometry. <i>Talanta</i> , 2018 , 190, 89-94	6.2	5
141	A review of sources, environmental occurrences and human exposure risks of hexachlorobutadiene and its association with some other chlorinated organics. <i>Environmental Pollution</i> , 2019 , 253, 831-840	9.3	5
140	Fatty acid profiles reveal toxic responses in adipose tissue of C57BL/6J mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. <i>Analytical Methods</i> , 2014 , 6, 8207-8211	3.2	5
139	A new method for identification of in vitro metabolites of 2,3,7,8-TCDD with rat liver microsomes by using liquid chromatography-mass spectrometry. <i>Analytical Methods</i> , 2013 , 5, 2757	3.2	5
138	Toxic chemicals from uncontrolled e-waste recycling: Exposure, body burden, health impact. Journal of Hazardous Materials, 2021 , 127792	12.8	5
137	In situ analysis of oxytetracycline tablets based on matrix-assisted laser desorption/ionization mass spectrometry imaging. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8592	2.2	5
136	Serum metabolic changes associated with dioxin exposure in a Chinese male cohort. <i>Environment International</i> , 2020 , 143, 105984	12.9	5
135	Use of NAD tagSeq II to identify growth phase-dependent alterations in RNA NAD capping. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
134	Immunometabolism-modulation and immunotoxicity evaluation of perfluorooctanoic acid in macrophage. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 215, 112128	7	5
133	Determination of newly synthesized dihydroxylated polybrominated diphenyl ethers in sea fish by gas chromatography-tandem mass spectrometry. <i>Chemosphere</i> , 2020 , 240, 124878	8.4	5
132	Data Filtering and Its Prioritization in Pipelines for Spatial Segmentation of Mass Spectrometry Imaging. <i>Analytical Chemistry</i> , 2021 , 93, 4788-4793	7.8	5
131	Potential Antiviral Target for SARS-CoV-2: A Key Early Responsive Kinase during Viral Entry. <i>CCS Chemistry</i> ,559-568	7.2	5
130	Fine chalk dust induces inflammatory response via p38 and ERK MAPK pathway in rat lung. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 1742-1751	5.1	5
129	MIL-101(Fe)-derived magnetic porous carbon as sorbent for stir bar sorptive-dispersive microextraction of sulfonamides. <i>Mikrochimica Acta</i> , 2021 , 188, 340	5.8	5

(2021-2021)

128	Urinary metabolic characterization with nephrotoxicity for residents under cadmium exposure. <i>Environment International</i> , 2021 , 154, 106646	12.9	5	
127	Integration of omics analysis and atmospheric pressure MALDI mass spectrometry imaging reveals the cadmium toxicity on female ICR mouse. <i>Science of the Total Environment</i> , 2021 , 801, 149803	10.2	5	
126	Regiospecific -alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. <i>Materials Horizons</i> , 2021 ,	14.4	5	
125	Serum metabolomic and lipidomic profiling identifies diagnostic biomarkers for seropositive and seronegative rheumatoid arthritis patients. <i>Journal of Translational Medicine</i> , 2021 , 19, 500	8.5	5	
124	Association of in utero hexachlorocyclohexane exposure with gestational age. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 174, 263-269	7	4	
123	Mass spectrometry-based lipidomics analysis using methyl tert-butyl ether extraction in human hepatocellular carcinoma tissues. <i>Analytical Methods</i> , 2015 , 7, 8466-8471	3.2	4	
122	Selective detection of sulfide in human lung cancer cells with a blue-fluorescent "ON-OFF-ON" benzimidazole-based chemosensor ensemble. <i>Dalton Transactions</i> , 2020 , 49, 5445-5453	4.3	4	
121	Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in mountainous and park soils in Beijing, China. <i>International Journal of Environmental Analytical Chemistry</i> , 2014 , 94, 691-711	1.8	4	
120	Proteomics study of N-acetylcysteine response in H1N1-infected cells by using mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2014 , 28, 741-9	2.2	4	
119	Determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in human serum using programmable-temperature vaporization gas chromatography with high-resolution mass spectrometry. <i>Journal of Separation</i>	3.4	4	
118	Occurrence, profile and possible sources of PCNs in Hong Kong soils, and a comparison with PCBs, PCDDs and PCDFs. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 13656-63	5.1	4	
117	Identification of unusual truncated forms of nucleocapsid protein in MDCK cells infected by Avian influenza virus (H9N2). <i>Proteomics</i> , 2010 , 10, 1875-9	4.8	4	
116	Site-specific binding of chelerythrine to single cytosine and thymine bulges in DNA hairpins. <i>Nucleic Acids Symposium Series</i> , 2006 , 197-8		4	
115	Association of altered serum acylcarnitine levels in early pregnancy and risk of gestational diabetes mellitus. <i>Science China Chemistry</i> , 2020 , 63, 126-134	7.9	4	
114	Biotransformation of 6:2 fluorotelomer alcohol by the whole soybean (Glycine max L. Merrill) seedlings. <i>Environmental Pollution</i> , 2020 , 257, 113513	9.3	4	
113	NAD tagSeq for transcriptome-wide identification and characterization of NAD-capped RNAs. <i>Nature Protocols</i> , 2020 , 15, 2813-2836	18.8	4	
112	Continuous Dermal Exposure to Triclocarban Perturbs the Homeostasis of Liver-Gut Axis in Mice: Insights from Metabolic Interactions and Microbiome Shifts. <i>Environmental Science & Eamp; Technology</i> , 2021 , 55, 5117-5127	10.3	4	
111	Integrated metabolomics analysis of the effect of PPAR agonist GW501516 on catabolism of BCAAs and carboxylic acids in diabetic mice. <i>Chinese Chemical Letters</i> , 2021 , 32, 2197-2202	8.1	4	

110	Visualization of lipids in cottonseeds by matrix-assisted laser desorption/ionization mass spectrometry imaging. <i>Talanta</i> , 2021 , 221, 121614	6.2	4
109	Characteristics of exposure to multiple environmental chemicals among pregnant women in Wuhan, China. <i>Science of the Total Environment</i> , 2021 , 754, 142167	10.2	4
108	An integrated quantitative proteomics strategy reveals the dual mechanisms of celastrol against acute inflammation. <i>Chinese Chemical Letters</i> , 2021 , 32, 2164-2168	8.1	4
107	Frequent occurrence of triclosan hydroxylation in mammals: A combined theoretical and experimental investigation. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124803	12.8	4
106	Mass spectrometry-based metabolomics investigation on two different indica rice grains (Oryza sativa L.) under cadmium stress. <i>Food Chemistry</i> , 2021 , 343, 128472	8.5	4
105	Facile fabrication of magnetic covalent organic frameworks and their application in selective enrichment of polychlorinated naphthalenes from fine particulate matter. <i>Mikrochimica Acta</i> , 2021 , 188, 91	5.8	4
104	Trimester-specific and sex-specific effects of prenatal exposure to di(2-ethylhexyl) phthalate on fetal growth, birth size, and early-childhood growth: A longitudinal prospective cohort study. Science of the Total Environment, 2021, 777, 146146	10.2	4
103	Ambient air PM exposure induces heart injury and cardiac hypertrophy in rats through regulation of miR-208a/b, 在MHC, and GATA4. <i>Environmental Toxicology and Pharmacology</i> , 2021 , 85, 103653	5.8	4
102	Taurine reduction associated with heart dysfunction after real-world PM exposure in aged mice. <i>Science of the Total Environment</i> , 2021 , 782, 146866	10.2	4
101	Discovery of emerging sulfur-containing PAHs in PM: Contamination profiles and potential health risks. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125795	12.8	4
100	Effects of hydroxyl group content on adsorption and desorption of anthracene and anthrol by polyvinyl chloride microplastics. <i>Science of the Total Environment</i> , 2021 , 790, 148077	10.2	4
99	New insights into the anti- hepatoma mechanism of triple-helix Eglucan by metabolomics profiling. <i>Carbohydrate Polymers</i> , 2021 , 269, 118289	10.3	4
98	Comprehensive multi-omics approaches reveal the hepatotoxic mechanism of perfluorohexanoic acid (PFHxA) in mice. <i>Science of the Total Environment</i> , 2021 , 790, 148160	10.2	4
97	Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine. <i>Analytica Chimica Acta</i> , 2021 , 1184, 339011	6.6	4
96	Molecular characterization of organic aerosols in Taiyuan, China: Seasonal variation and source identification. <i>Science of the Total Environment</i> , 2021 , 800, 149419	10.2	4
95	Lipid metabolism dysfunction and toxicity of BDE-47 exposure in white adipose tissue revealed by the integration of lipidomics and metabolomics. <i>Science of the Total Environment</i> , 2022 , 806, 150350	10.2	4
94	Ion-pairing liquid chromatography coupled with mass spectrometry for the simultaneous determination of nucleosides and nucleotides. <i>Chinese Journal of Chromatography (Se Pu)</i> , 2004 , 22, 358	-66	4
93	N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer <i>Gastroenterology</i> , 2021 ,	13.3	4

(2019-2019)

92	Analysis of Nitropolycyclic Aromatic Hydrocarbons in Fine Particulate Matter by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Using Fe3O4/ZIF-8 Magnetic Nanocomposites as Matrix. <i>Journal of Applied Spectroscopy</i> , 2019 , 86, 89-95	0.7	3
91	High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes. <i>Analytical Chemistry</i> , 2020 , 92, 8933-8942	7.8	3
90	CPVA: a web-based metabolomic tool for chromatographic peak visualization and annotation. <i>Bioinformatics</i> , 2020 , 36, 3913-3915	7.2	3
89	GC-MS/MS analysis for source identification of emerging POPs in PM. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 193, 110368	7	3
88	Method development of combining pressurized liquid extraction and off-line HPLC fractionation with a porous graphite carbon column for the analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in environmental samples. <i>International Journal of Environmental</i>	1.8	3
87	A new approach for the sensitive determination of DNA adduct of aristolochic acid II by using high-performance liquid chromatography with fluorescence detection. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2009 , 877, 848-52	3.2	3
86	Identification of amino acid substitutions in mutated peptides of nucleoprotein from avian influenza virus. <i>Talanta</i> , 2009 , 78, 1492-6	6.2	3
85	Response to Comments on Llevels of Polychlorodibenzo-p-dioxins and Dibenzofurans in Crab Tissues from the Newark/Raritan Bay System <i>Environmental Science & Amp; Technology</i> , 1996 , 30, 723-7	2 ¹ 4 ^{0.3}	3
84	Determination of Atrazine and Hydroxyatrazine in Agricultural Runoff Waters by Liquid Chromatography and Fast Atom Bombardment-High Resolution Mass Spectrometry. <i>Journal of AOAC INTERNATIONAL</i> , 1996 , 79, 929-935	1.7	3
83	Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract <i>Nature Communications</i> , 2022 , 13, 136	17.4	3
82	The oxidation of cysteine-containing peptides caused by perfluoroalkane sulfonyl fluorides. <i>Journal of Hazardous Materials</i> , 2020 , 385, 121564	12.8	3
81	6-OH-BDE-47 exposure-induced Parkinson's disease pathology in Sprague Dawley rat. <i>Science of the Total Environment</i> , 2020 , 711, 135184	10.2	3
80	MALDI-MS Imaging Analysis of Noninflammatory Type III Rotaxane Dendrimers. <i>Journal of the American Society for Mass Spectrometry</i> , 2020 , 31, 2488-2494	3.5	3
79	Squalene Epoxidase Induces Nonalcoholic Steatohepatitis Via Binding to Carbonic Anhydrase III and is a Therapeutic Target. <i>Gastroenterology</i> , 2021 , 160, 2467-2482.e3	13.3	3
78	Three-Dimensional Imaging of Whole-Body Zebrafish Revealed Lipid Disorders Associated with Niemann-Pick Disease Type C1. <i>Analytical Chemistry</i> , 2021 , 93, 8178-8187	7.8	3
77	Facile preparation of nano-g-C3N4/UiO-66-NH2 composite as sorbent for high-efficient extraction and preconcentration of food colorants prior to HPLC analysis. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	3
76	Investigation of PM2.5 pollution during COVID-19 pandemic in Guangzhou, China. <i>Journal of Environmental Sciences</i> , 2021 , 115, 443-443	6.4	3
75	Simultaneous determination of amino acids, purines and derivatives in serum by ultrahigh-performance liquid chromatography/tandem mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2019 , 33, 81-88	2.2	3

74	Atmospheric pressure gas chromatography-tandem mass spectrometry analysis of fourteen emerging polycyclic aromatic sulfur heterocycles in PM2.5. <i>Chinese Chemical Letters</i> , 2021 , 32, 801-804	8.1	3
73	Spatial Lipidomics Reveals Anticancer Mechanisms of Bufalin in Combination with Cinobufagin in Tumor-Bearing Mice. <i>Frontiers in Pharmacology</i> , 2020 , 11, 593815	5.6	3
72	Visual authentication of edible vegetable oil and used cooking oil using MALDI imaging mass spectrometry. <i>Food Control</i> , 2021 , 125, 107966	6.2	3
71	Release of tens of thousands of microfibers from discarded face masks under simulated environmental conditions. <i>Science of the Total Environment</i> , 2022 , 806, 150458	10.2	3
70	Distribution and risk assessment of hexachlorobutadiene, pentachloroanisole, and chlorobenzenes in sediment and wild fish from a region affected by industrial and agricultural activities in South China. <i>Journal of Hazardous Materials</i> , 2021 , 417, 126002	12.8	3
69	Derivatization strategy for semi-quantitative analysis of medium- and long-chain fatty acids using multiple reaction monitoring. <i>Talanta</i> , 2021 , 233, 122464	6.2	3
68	Fabrication of stable multivariate metal-organic frameworks with excellent adsorption performance toward bisphenols from environmental samples. <i>Talanta</i> , 2021 , 235, 122818	6.2	3
67	In situ localization of lipids on mouse kidney tissues with acute cadmium toxicity using atmospheric pressure-MALDI mass spectrometry imaging <i>Talanta</i> , 2022 , 245, 123466	6.2	3
66	Spectroscopy study of the interaction between endocrine disruptor 4-OH-2,2?,3,4?-BDE and human serum albumin. <i>Analytical Methods</i> , 2017 , 9, 3338-3346	3.2	2
65	Quantitative Profiling of Protein-Derived Electrophilic Cofactors in Bacterial Cells with a Hydrazine-Derived Probe. <i>Analytical Chemistry</i> , 2020 , 92, 4484-4490	7.8	2
64	Fluorescence probe techniques to study the interaction between hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and protein disulfide isomerase (PDI). <i>Analytical Methods</i> , 2014 , 6, 8106-81	0 ³ 9 ²	2
63	Influence of COVID-19 lockdown on the variation of organic aerosols: Insight into its molecular composition and oxidative potential <i>Environmental Research</i> , 2021 , 206, 112597	7.9	2
62	TagSeqTools: a flexible and comprehensive analysis pipeline for NAD tagSeq data		2
61	Pollution characteristics, source apportionment and health risks assessment of fine particulate matter during a typical winter and summer time period in urban Taiyuan, China. <i>Human and Ecological Risk Assessment (HERA)</i> , 2020 , 26, 2737-2750	4.9	2
60	Simultaneous determination of triclosan, triclocarban, triclocarban metabolites and byproducts in urine and serum by ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2021 , 35, e9117	2.2	2
59	Application of a real-ambient fine particulate matter exposure system on different animal models. Journal of Environmental Sciences, 2021 , 105, 64-70	6.4	2
58	676 SLC25A22 Is Essential for Supporting Aspartate Biosynthesis and Is a Specific Vulnerability in KRAS-Mutant Colorectal Cancer. <i>Gastroenterology</i> , 2016 , 150, S139	13.3	2
57	Emerging environmental pollutants hydroxylated polybrominated diphenyl ethers: From analytical methods to toxicology research. <i>Mass Spectrometry Reviews</i> , 2021 , 40, 255-279	11	2

56	Toxicity and accumulation of 6-OH-BDE-47 and newly synthesized 6,6'-diOH-BDE-47 in early life-stages of Zebrafish (Danio rerio). <i>Science of the Total Environment</i> , 2021 , 763, 143036	10.2	2
55	Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls. <i>Science of the Total Environment</i> , 2021 , 756, 143836	10.2	2
54	A novel binary matrix consisting of graphene oxide and caffeic acid for the analysis of scutellarin and its metabolites in mouse kidney by MALDI imaging. <i>Analyst, The</i> , 2021 , 146, 289-295	5	2
53	Prenatal exposure to organochlorine pesticides and infant growth: A longitudinal study. <i>Environment International</i> , 2021 , 148, 106374	12.9	2
52	Identification of different hemagglutinin isoforms of influenza A virus H1N1. <i>Rapid Communications in Mass Spectrometry</i> , 2018 , 32, 1372-1378	2.2	2
51	Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. <i>Cell Reports</i> , 2021 , 36, 109617	10.6	2
50	Metabolic fate of environmental chemical triclocarban in colon tissues: roles of gut microbiota involved. <i>Science of the Total Environment</i> , 2021 , 787, 147677	10.2	2
49	Lipid metabolism disorders associated with dioxin exposure in a cohort of Chinese male workers revealed by a comprehensive lipidomics study. <i>Environment International</i> , 2021 , 155, 106665	12.9	2
48	Intertidal zone effects on Occurrence, fate and potential risks of microplastics with perspectives under COVID-19 pandemic. <i>Chemical Engineering Journal</i> , 2022 , 429, 132351	14.7	2
47	Exposure to ambient fine particulate matter impedes the function of spleen in the mouse metabolism of high-fat diet. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127129	12.8	2
46	4-Mercaptobenzoic acid as a MALDI matrix for highly sensitive analysis of metals. <i>Analyst, The</i> , 2021 , 146, 1543-1547	5	2
45	Determination of 2,8-dichlorodibenzo-p-dioxin in toothpaste and mouthwash consumer products using GC-MS. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 18927-32	5.1	1
44	Peptidomics study of anthocyanin-rich juice of elderberry. <i>Talanta</i> , 2015 , 131, 640-4	6.2	1
43	Prenatal exposure to benzotraizoles and benzothiazoles in relation to fetal and birth size: A longitudinal study. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122828	12.8	1
42	Response to Comment on "Thyroid Cancer 'Epidemic': A Socio-Environmental Health Problem Needs Collaborative Efforts". <i>Environmental Science & Environmental Science & Environ</i>	10.3	1
41	Surface-enhanced laser desorption/ionization mass spectrometry for rapid analysis of organic environmental pollutants by using polydopamine nanospheres as a substrate. <i>Analyst, The</i> , 2020 , 145, 5664-5669	5	1
40	Characteristic and potential sources of polychlorinated dibenzo-P-dioxins and dibenzofurans in agricultural soils in Beijing, China. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2004-12	3.8	1
39	Metabolic study of aristolochic acid I-exposed mice liver by atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging and machine learning <i>Talanta</i> , 2022 , 241, 1232	261 ²	1

38	Polyamide-Supported Covalent Organic Framework Nanomembranes for Molecular Size-Dependent Selective Separation. <i>ACS Applied Nano Materials</i> ,	5.6	1
37	Toxic effects of triclocarban on larval zebrafish: A focus on visual dysfunction. <i>Aquatic Toxicology</i> , 2021 , 241, 106013	5.1	1
36	Soluble arsenic species in total suspended particles and their health risk and origin implication: A case study in Taiyuan, China. <i>Science of the Total Environment</i> , 2022 , 807, 150791	10.2	1
35	Quality control-based signal drift correction and interpretations of metabolomics/proteomics data using random forest regression		1
34	Application of pharmacodynamics-based optimization to the extraction of bioactive compounds from Chansu. <i>Microchemical Journal</i> , 2020 , 159, 105552	4.8	1
33	Mass spectrometry imaging and monitoring of in vivo glutathione-triggered cisplatin release from nanoparticles in the kidneys. <i>Nanoscale Advances</i> , 2020 , 2, 5857-5865	5.1	1
32	Database-assisted global metabolomics profiling of pleural effusion induced by tuberculosis and malignancy. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	1
31	Cumulative health risks for bisphenols using the maximum cumulative ratio among Chinese pregnant women. <i>Environmental Pollution</i> , 2021 , 270, 116044	9.3	1
30	Integrated Proteomics and Metabolomics Assessment Indicated Metabolic Alterations in Hypothalamus of Mice Exposed to Triclosan. <i>Chemical Research in Toxicology</i> , 2021 , 34, 1319-1328	4	1
29	Mass spectrometry investigation of nucleoside adducts of fatty acid hydroperoxides from oxidation of linolenic and linoleic acids. <i>Journal of Chromatography A</i> , 2021 , 1649, 462236	4.5	1
28	Enhanced Adsorption of Methyl Orange by Mongolian Montmorillonite after Aluminum Pillaring. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 3182	2.6	1
27	Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles. <i>Chinese Chemical Letters</i> , 2022 ,	8.1	1
26	The composites of triple-helix glucan nanotubes/selenium nanoparticles target hepatocellular carcinoma to enhance ferroptosisby depleting glutathione and augmenting redox imbalances. <i>Chemical Engineering Journal</i> , 2022 , 137110	14.7	1
25	A glutathione-responsive silica-based nanosystem capped with in-situ polymerized cell-penetrating poly(disulfide)s for precisely modulating immuno-inflammatory responses <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 322-336	9.3	O
24	Exploring the adsorption behavior of benzotriazoles and benzothiazoles on polyvinyl chloride microplastics in the water environment <i>Science of the Total Environment</i> , 2022 , 153471	10.2	О
23	An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world PM2.5 exposure. <i>Journal of Environmental Sciences</i> , 2022 , 122, 25-40	6.4	O
22	Metabolomics and proteomics study reveals the effects of benzo[a]pyrene on the viability and migration of KYSE-150 esophageal cells <i>Science of the Total Environment</i> , 2022 , 153761	10.2	O
21	Machine Learning for Investigation on Endocrine-Disrupting Chemicals with Gestational Age and Delivery Time in a Longitudinal Cohort. <i>Research</i> , 2021 , 2021, 9873135	7.8	O

20	Pollution characteristics, exposure assessment and potential cardiotoxicities of PM-bound benzotriazole and its derivatives in typical Chinese cities. <i>Science of the Total Environment</i> , 2021 , 15113	2 ^{10.2}	О
19	Sulfinylation on Superoxide Dismutase 1 Cys111: Novel Mechanism for 1-Nitropyrene to Promote Acute Reactive Oxygen Species Generation. <i>Small Structures</i> , 2021 , 2, 2000123	8.7	O
18	Metabolic and Lipid Alterations in Mice Brain Cortex after PM Exposure. <i>Chemical Research in Toxicology</i> , 2021 , 34, 1250-1255	4	0
17	Molecular structural heterogeneity of bisphenols governs their serum albumin binding. <i>Science of the Total Environment</i> , 2021 , 781, 146499	10.2	О
16	A stark difference in the profiles of defective viral transcripts between SARS-CoV-2 and SARS-CoV. <i>Journal of Infection</i> , 2021 , 83, 381-412	18.9	0
15	Characterization and Determination of C-Labeled Nonessential Amino Acids in a C-Glutamine Isotope Tracer Experiment with a Mass Spectrometry Strategy Combining Parallel Reaction Monitoring and Multiple Reaction Monitoring. <i>Analytical Chemistry</i> , 2021 , 93, 13564-13571	7.8	O
14	Analysis of aristolochic acid I in mouse serum and tissues by using magnetic solid-phase extraction and UHPLC-MS/MS. <i>Talanta</i> , 2021 , 235, 122774	6.2	O
13	Airborne particulate matter and its organic components: Complex triggers of human disease 2021 , 193	-206	Ο
12	One-pot synthesis of magnetic covalent organic frameworks for highly efficient enrichment of phthalate esters from fine particulate matter <i>Journal of Chromatography A</i> , 2022 , 1667, 462906	4.5	0
11	A QuEChERS-based UPLC-MS/MS method for rapid determination of organophosphate flame retardants and their metabolites in human urine <i>Science of the Total Environment</i> , 2022 , 153989	10.2	O
10	Mass spectrometric determination of N7-HPTE-dG and N7-HPTE-Gua in mammalian cells and mice exposed to methoxychlor, an emergent persistent organic pollutant <i>Journal of Hazardous Materials</i> , 2022 , 432, 128741	12.8	0
9	Equipment-free, gold nanoparticle based semiquantitative assay of SARS-CoV-2-S1RBD IgG from fingertip blood: A practical strategy for on-site measurement of COVID-19 antibodies <i>Talanta</i> , 2022 , 246, 123498	6.2	O
8	Associations of benzotriazoles and benzothiazoles with estrogens and androgens among pregnant women: A cohort study with repeated measurements <i>Science of the Total Environment</i> , 2022 , 155998	10.2	0
7	Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging. <i>Foods</i> , 2022 , 11, 1583	4.9	О
6	Spatially revealed perfluorooctane sulfonate-induced nephrotoxicity in mouse kidney using atmospheric pressure MALDI mass spectrometry imaging. <i>Science of the Total Environment</i> , 2022 , 838, 156380	10.2	O
5	Recent progress in quantitative analysis of DNA adducts of nephrotoxin aristolochic acid. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1576-1582		
4	The Pharmacokinetics Analysis of the Phosphoryl Peptides in MCF-7/ADR Cells. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2008 , 183, 737-744	1	
3	Simultaneous analysis of derivatized allyl isothiocyanate together with its phase II metabolites by UHPLC-MS/MS <i>Rapid Communications in Mass Spectrometry</i> , 2022 , e9257	2.2	

Multi-Omics Comparison of the Spontaneous Diabetes Mellitus and Diet-Induced Prediabetic Macaque Models. *Frontiers in Pharmacology*, **2021**, 12, 784231

5.6

Extracellular and Intracellular Angiotensin II Regulate the Automaticity of Developing Cardiomyocytes Different Signaling Pathways. *Frontiers in Molecular Biosciences*, **2021**, 8, 699827

5.6