
Shidang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5752200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photosensitizers with Aggregationâ€Induced Emission: Materials and Biomedical Applications. Advanced Materials, 2018, 30, e1801350.	21.0	611
2	Organic Nanocrystals with Bright Red Persistent Roomâ€Temperature Phosphorescence for Biological Applications. Angewandte Chemie - International Edition, 2017, 56, 12160-12164.	13.8	458
3	Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chemical Science, 2015, 6, 5824-5830.	7.4	406
4	A Highly Efficient and Photostable Photosensitizer with Nearâ€Infrared Aggregationâ€Induced Emission for Imageâ€Guided Photodynamic Anticancer Therapy. Advanced Materials, 2017, 29, 1700548.	21.0	373
5	Bright Aggregationâ€Inducedâ€Emission Dots for Targeted Synergetic NIRâ€II Fluorescence and NIRâ€I Photoacoustic Imaging of Orthotopic Brain Tumors. Advanced Materials, 2018, 30, e1800766.	21.0	330
6	Precise Molecular Design for Highâ€Performance Luminogens with Aggregationâ€Induced Emission. Advanced Materials, 2020, 32, e1903530.	21.0	296
7	Polymerization-Enhanced Photosensitization. CheM, 2018, 4, 1937-1951.	11.7	227
8	A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells. Chemical Science, 2016, 7, 1862-1866.	7.4	188
9	Molecular Engineering of Conjugated Polymers for Biocompatible Organic Nanoparticles with Highly Efficient Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS Nano, 2017, 11, 10124-10134.	14.6	182
10	Polymerization-Enhanced Two-Photon Photosensitization for Precise Photodynamic Therapy. ACS Nano, 2019, 13, 3095-3105.	14.6	182
11	A Polarityâ€Sensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferroptosis. Angewandte Chemie - International Edition, 2021, 60, 15095-15100.	13.8	182
12	Precise Deciphering of Brain Vasculatures and Microscopic Tumors with Dual NIRâ€II Fluorescence and Photoacoustic Imaging. Advanced Materials, 2019, 31, e1902504.	21.0	181
13	Bioorthogonal Turnâ€On Probe Based on Aggregationâ€Induced Emission Characteristics for Cancer Cell Imaging and Ablation. Angewandte Chemie - International Edition, 2016, 55, 6457-6461.	13.8	178
14	Lightâ€Up Probe for Targeted and Activatable Photodynamic Therapy with Realâ€Time In Situ Reporting of Sensitizer Activation and Therapeutic Responses. Advanced Functional Materials, 2015, 25, 6586-6595.	14.9	144
15	Rational Design of a Red-Emissive Fluorophore with AIE and ESIPT Characteristics and Its Application in Light-Up Sensing of Esterase. Analytical Chemistry, 2017, 89, 3162-3168.	6.5	143
16	A Porphyrinâ€Based Conjugated Polymer for Highly Efficient In Vitro and In Vivo Photothermal Therapy. Small, 2016, 12, 6243-6254.	10.0	137
17	Highâ€Resolution 3D NIRâ€II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent. Advanced Materials, 2019, 31, e1808355.	21.0	133
18	Cancerâ€Cellâ€Activated in situ Synthesis of Mitochondriaâ€Targeting AIE Photosensitizer for Precise Photodynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 14945-14953.	13.8	130

Shidang Xu

#	Article	IF	CITATIONS
19	Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Materials Horizons, 2017, 4, 1151-1156.	12.2	129
20	High performance photosensitizers with aggregation-induced emission for image-guided photodynamic anticancer therapy. Materials Horizons, 2017, 4, 1110-1114.	12.2	122
21	Organic Nanocrystals with Bright Red Persistent Roomâ€Temperature Phosphorescence for Biological Applications. Angewandte Chemie, 2017, 129, 12328-12332.	2.0	117
22	Far Red/Near-Infrared AIE Dots for Image-Guided Photodynamic Cancer Cell Ablation. ACS Applied Materials & Interfaces, 2016, 8, 21193-21200.	8.0	103
23	A Photostable Far-Red/Near-Infrared Conjugated Polymer Photosensitizer with Aggregation-Induced Emission for Image-Guided Cancer Cell Ablation. Macromolecules, 2016, 49, 5017-5025.	4.8	100
24	Precise Molecular Engineering of Photosensitizers with Aggregationâ€Induced Emission over 800 nm for Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1901791.	14.9	100
25	AlEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. Science Advances, 2020, 6, eabb2712.	10.3	100
26	Constructing Adaptive Photosensitizers via Supramolecular Modification Based on Pillararene Host–Guest Interactions. Angewandte Chemie - International Edition, 2020, 59, 11779-11783.	13.8	100
27	Dibenzothiopheneâ€ <i>S</i> , <i>S</i> â€Dioxideâ€Based Conjugated Polymers: Highly Efficient Photocatalyts for Hydrogen Production from Water under Visible Light. Small, 2018, 14, e1801839.	10.0	96
28	Highly efficient photosensitizers with aggregation-induced emission characteristics obtained through precise molecular design. Chemical Communications, 2017, 53, 8727-8730.	4.1	94
29	Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Advanced Functional Materials, 2020, 30, 1907093.	14.9	84
30	Structureâ€Ðependent <i>cis</i> / <i>trans</i> Isomerization of Tetraphenylethene Derivatives: Consequences for Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2016, 55, 6192-6196.	13.8	75
31	Siloleâ€Based Red Fluorescent Organic Dots for Bright Twoâ€Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging. Small, 2016, 12, 782-792.	10.0	74
32	All-in-One Molecular Aggregation-Induced Emission Theranostics: Fluorescence Image Guided and Mitochondria Targeted Chemo- and Photodynamic Cancer Cell Ablation. Chemistry of Materials, 2020, 32, 4681-4691.	6.7	73
33	Dual-targeted activatable photosensitizers with aggregation-induced emission (AIE) characteristics for image-guided photodynamic cancer cell ablation. Journal of Materials Chemistry B, 2016, 4, 169-176.	5.8	71
34	A FRET probe with AIEgen as the energy quencher: dual signal turn-on for self-validated caspase detection. Chemical Science, 2016, 7, 4245-4250.	7.4	69
35	Cationization to boost both type I and type II ROS generation for photodynamic therapy. Biomaterials, 2022, 280, 121255.	11.4	67
36	Light-responsive AIE nanoparticles with cytosolic drug release to overcome drug resistance in cancer cells. Polymer Chemistry, 2016, 7, 3530-3539.	3.9	62

Shidang Xu

#	Article	IF	CITATIONS
37	Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics, 2019, 9, 1264-1279.	10.0	56
38	Revisiting Carbazole: Origin, Impurity, and Properties. , 2021, 3, 1081-1087.		47
39	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€lnduced Photooxidation. Angewandte Chemie - International Edition, 2019, 58, 3062-3066.	13.8	45
40	Bioorthogonal Turnâ€On Probe Based on Aggregationâ€Induced Emission Characteristics for Cancer Cell Imaging and Ablation. Angewandte Chemie, 2016, 128, 6567-6571.	2.0	41
41	Nanostructural Control Enables Optimized Photoacoustic–Fluorescence–Magnetic Resonance Multimodal Imaging and Photothermal Therapy of Brain Tumor. Advanced Functional Materials, 2020, 30, 1907077.	14.9	41
42	Tumor-Activated and Metal–Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS Nano, 2020, 14, 13056-13068.	14.6	38
43	Visualizing Photodynamic Therapy in Transgenic Zebrafish Using Organic Nanoparticles with Aggregation-Induced Emission. Nano-Micro Letters, 2018, 10, 61.	27.0	33
44	Simultaneous Increase in Brightness and Singlet Oxygen Generation of an Organic Photosensitizer by Nanocrystallization. Small, 2018, 14, e1803325.	10.0	31
45	Nanobody modified high-performance AIE photosensitizer nanoparticles for precise photodynamic oral cancer therapy of patient-derived tumor xenograft. Biomaterials, 2021, 274, 120870.	11.4	30
46	Organic Nanoparticles with Aggregationâ€Induced Emission for Bone Marrow Stromal Cell Tracking in a Rat PTI Model. Small, 2016, 12, 6576-6585.	10.0	29
47	Metabolizable Photosensitizer with Aggregation-Induced Emission for Photodynamic Therapy. Chemistry of Materials, 2021, 33, 5974-5980.	6.7	25
48	Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS Nano, 2022, 16, 2355-2368.	14.6	21
49	Structureâ€Ðependent <i>cis</i> / <i>trans</i> Isomerization of Tetraphenylethene Derivatives: Consequences for Aggregationâ€Induced Emission. Angewandte Chemie, 2016, 128, 6300-6304.	2.0	19
50	Calix[4]resorcinarene-based branched macromolecules for all-optical photorefractive applications. Journal of Materials Chemistry C, 2016, 4, 10684-10690.	5.5	17
51	Self-Improving Photosensitizer Discovery System via Bayesian Search with First-Principle Simulations. Journal of the American Chemical Society, 2021, 143, 19769-19777.	13.7	17
52	Machineâ€Learningâ€Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation. Advanced Science, 2022, 9, e2101074.	11.2	17
53	Photoacoustic Imaging: Bright Aggregationâ€Inducedâ€Emission Dots for Targeted Synergetic NIRâ€I Fluorescence and NIRâ€I Photoacoustic Imaging of Orthotopic Brain Tumors (Adv. Mater. 29/2018). Advanced Materials, 2018, 30, 1870214.	21.0	15
54	An AIEgen as an Intrinsic Antibacterial Agent for Lightâ€Up Detection and Inactivation of Intracellular Gramâ€Positive Bacteria. Advanced Healthcare Materials, 2021, 10, e2100885.	7.6	15

SHIDANG XU

#	Article	IF	CITATIONS
55	Cancerâ€Cellâ€Activated in situ Synthesis of Mitochondriaâ€Targeting AlE Photosensitizer for Precise Photodynamic Therapy. Angewandte Chemie, 2021, 133, 15072-15080.	2.0	14
56	Stereoisomerization during Molecular Packing. Advanced Materials, 2021, 33, e2100986.	21.0	13
57	From main-chain conjugated polymer photosensitizer to hyperbranched polymer photosensitizer: expansion of the polymerization-enhanced photosensitization effect for photodynamic therapy. Journal of Materials Chemistry B, 0, , .	5.8	13
58	Constructing Adaptive Photosensitizers via Supramolecular Modification Based on Pillararene Host–Guest Interactions. Angewandte Chemie, 2020, 132, 11877-11881.	2.0	12
59	A Polarityâ€ S ensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferroptosis. Angewandte Chemie, 2021, 133, 15222-15227.	2.0	11
60	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€lnduced Photooxidation. Angewandte Chemie, 2019, 131, 3094-3098.	2.0	7
61	Photothermalâ€Activatable Liposome Carrying Tissue Plasminogen Activator for Photoacoustic Imageâ€Guided Ischemic Stroke Treatment. Small Structures, 2022, 3, 2100118.	12.0	5

Photodynamic Therapy: Light-Up Probe for Targeted and Activatable Photodynamic Therapy with Real-Time In Situ Reporting of Sensitizer Activation and Therapeutic Responses (Adv. Funct. Mater.) Tj ETQq0 0 0 rgBTg/Overlack 10 Tf 5 62