Yuichi Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5752195/publications.pdf

Version: 2024-02-01

840776 794594 22 351 11 19 citations h-index g-index papers 22 22 22 337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Applied Physics Letters, 2015, 106 , .	3.3	72
2	Continuous-tone images obtained using three primary-color electrochromic cells containing gel electrolyte. Solar Energy Materials and Solar Cells, 2012, 104, 140-145.	6.2	40
3	Improvement in reflective–emissive dual-mode properties of electrochemical displays by electrode modification. Physical Chemistry Chemical Physics, 2011, 13, 19420.	2.8	32
4	Fabrication of Novel Reflective–Emissive Dual-mode Display Cell Based on Electrochemical Reaction. Chemistry Letters, 2010, 39, 1309-1311.	1.3	31
5	Multicolored electrochromism in $4,4\hat{a}\in^2$ -biphenyl dicarboxylic acid diethyl ester. Physical Chemistry Chemical Physics, 2011, 13, 11838.	2.8	31
6	Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell. Solar Energy Materials and Solar Cells, 2012, 99, 88-94.	6.2	26
7	In–Ga–Zn oxide nanoparticles acting as an oxide semiconductor material synthesized via a coprecipitation-based method. Journal of Materials Chemistry C, 2014, 2, 2448.	5.5	23
8	Spectro-electrochemical Properties of Phthalate Derivative-based Electrochromic Cell with Gel Electrolyte Containing DMSO Solvent Electrochemistry, 2009, 77, 306-308.	1.4	17
9	Increase in thermoelectric power factor of carbon-nanotube films after addition of polystyrene. Organic Electronics, 2016, 28, 135-138.	2.6	15
10	In situ measurements of electrode potentials of anode and cathode in organic electrochromic devices. Solar Energy Materials and Solar Cells, 2017, 163, 200-203.	6.2	15
11	Printed pressure sensor array sheets fabricated using poly(amino acid)-based piezoelectric elements. Japanese Journal of Applied Physics, 2014, 53, 05HB15.	1.5	12
12	Phthalate-derivative/TiO2-modified electrode for electrochromic application. Solar Energy Materials and Solar Cells, 2009, 93, 2098-2101.	6.2	8
13	Pressure Sensor Array Fabricated with Polyamino Acid. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 411-414.	0.3	7
14	Electrochromic Response Characteristics of Dye-modified Porous Electrodes Affected by the Porous Film Structure. Chemistry Letters, 2016, 45, 1291-1293.	1.3	6
15	Voltage Contrast in Scanning Electron Microscopy to Distinguish Conducting Ag Nanowire Networks from Nonconducting Ag Nanowire Networks. ACS Omega, 2020, 5, 12692-12697.	3.5	6
16	Electrochromic properties of the polyethylene terephthalate derivative filmâ€modified electrode. Polymers for Advanced Technologies, 2011, 22, 1283-1285.	3.2	3
17	Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles. AIP Advances, 2016, 6, 065121.	1.3	3
18	Structure-dependent electrochemical response characteristics of antimony tin oxide nanoparticle-based porous electrodes. AIP Advances, 2020, 10, 035226.	1.3	2

#	Article	lF	CITATIONS
19	Robustness of organic physically unclonable function with buskeeper circuit for flexible security devices. Japanese Journal of Applied Physics, 2022, 61, SE1016.	1.5	1
20	Development of a simple contact-type printable physically unclonable function device using percolation conduction of rod-like conductive fillers. Japanese Journal of Applied Physics, 2022, 61, SE1005.	1.5	1
21	Functional Elastomer for Flexible Electronics: Light Emitting Device and Gas Sensor. , 2020, , .		O
22	Structure-Dependent Response Characteristics of Electrochromic Dye-Modified Transparent Conductive Oxide Porous Electrode. ECS Meeting Abstracts, 2017, , .	0.0	0