Vincent Meunier

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5752104/vincent-meunier-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 296 19,097 132 h-index g-index citations papers 8.1 6.78 21,438 317 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
296	Electronic properties of boron-rich graphene nanowiggles. <i>Computational Materials Science</i> , 2022 , 201, 110907	3.2	O
295	Exact and many-body perturbation solutions of the Hubbard model applied to linear chains. <i>AIP Advances</i> , 2022 , 12, 035238	1.5	
294	Electronic properties of 2D and 1D carbon allotropes based on a triphenylene structural unit. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 25114-25125	3.6	O
293	Voltage-Dependent Barrier Height of Electron Transport through Iron Porphyrin Molecular Junctions. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 7350-7357	3.8	1
292	Semi-empirical many-body formalism of optical absorption in nanosystems and molecules. <i>Carbon Trends</i> , 2021 , 4, 100073	О	2
291	Electronic properties of N-rich graphene nano-chevrons. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 13204-13215	3.6	1
290	Localization of lattice dynamics in low-angle twisted bilayer graphene. <i>Nature</i> , 2021 , 590, 405-409	50.4	46
289	Low-frequency Raman signature of Ag-intercalated few-layer MoS2. 2D Materials, 2021, 8, 025031	5.9	5
288	Partial charge transfer and absence of induced magnetization in EuS(111)/Bi2Se3 heterostructures. <i>Physical Review B</i> , 2021 , 104,	3.3	2
287	Structural and electronic properties of double-walled Egraphyne nanotubes. <i>Computational Materials Science</i> , 2021 , 200, 110768	3.2	
286	Highly Selective, Defect-Induced Photocatalytic CO Reduction to Acetaldehyde by the Nb-Doped TiO Nanotube Array under Simulated Solar Illumination. <i>ACS Applied Materials & Document Supplied</i> 12, 55982-55993	9.5	11
285	Electronic and structural properties of tetragraphenes. Carbon, 2020, 167, 403-413	10.4	5
284	Substitutional transition metal doping in MoS2: a first-principles study. <i>Nano Express</i> , 2020 , 1, 010008	2	6
283	Reversible Pressure-Induced Partial Phase Transition in Few-Layer Black Phosphorus. <i>Nano Letters</i> , 2020 , 20, 5929-5935	11.5	7
282	Soliton signature in the phonon spectrum of twisted bilayer graphene. 2D Materials, 2020, 7, 025050	5.9	16
281	Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. <i>Advanced Materials</i> , 2020 , 32, e1906054	24	24
280	Carbon science perspective in 2020: Current research and future challenges. <i>Carbon</i> , 2020 , 161, 373-39	110.4	35

(2019-2020)

279	Sculpting Artificial Edges in Monolayer MoS for Controlled Formation of Surface-Enhanced Raman Hotspots. <i>ACS Nano</i> , 2020 , 14, 6258-6268	6.7	17	
278	An Environmentally Stable and Lead-Free Chalcogenide Perovskite. <i>Advanced Functional Materials</i> , 2020 , 30, 2001387	5.6	23	
277	Enabling room temperature ferromagnetism in monolayer MoS via in situ iron-doping. <i>Nature Communications</i> , 2020 , 11, 2034	7.4	46	
276	Naphthylene-E1D and 2D carbon allotropes based on the fusion of phenyl- and naphthyl-like groups. <i>Physical Review Materials</i> , 2020 , 4,	2	1	
275	The effects of substitutional Fe-doping on magnetism in MoS2 and WS2 monolayers. Nanotechnology, 2020, 3-	4	6	
274	In-plane breathing and shear modes in low-dimensional nanostructures. <i>Carbon</i> , 2020 , 157, 364-370 10	0.4	6	
273	Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis. <i>ACS Catalysis</i> , 2020 , 10, 1993-2008	3.1	57	
272	Machine-learning models for Raman spectra analysis of twisted bilayer graphene. <i>Carbon</i> , 2020 , 169, 455-464	0.4	8	
271	Tripentaphenes: two-dimensional acepentalene-based nanocarbon allotropes. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23195-23206	6	2	
270	Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1900343	3	13	
269	Theoretical analysis of spectral lineshapes from molecular dynamics. <i>Npj Computational Materials</i> , 2019 , 5,	0.9	5	
268	Magnetic Proximity Coupling of Quantum Emitters in WSe to van der Waals Ferromagnets. <i>Nano Letters</i> , 2019 , 19, 7301-7308	1.5	12	
267	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13	10 9 1	15	
266	Excitation to defect-bound band edge states in two-dimensional semiconductors and its effect on carrier transport. <i>Npj Computational Materials</i> , 2019 , 5,	0.9	13	
265	Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS. <i>ACS Nano</i> , 2019 , 13, 2481-248910	6.7	32	
264	Improved model of ionic transport in 2-D MoS2 membranes with sub-5 nm pores. <i>Applied Physics Letters</i> , 2019 , 114, 023107	4	15	
263	Modeling the Kondo effect of a magnetic atom adsorbed on graphene. 2D Materials, 2019 , 6, 035038 5.	9	3	
262	On-Surface Synthesis and Characterization of Acene-Based Nanoribbons Incorporating Four-Membered Rings. <i>Chemistry - A European Journal</i> , 2019 , 25, 12074-12082	.8	18	

261	Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. <i>Nature Communications</i> , 2019 , 10, 1764	17.4	42
260	An unexpected organometallic intermediate in surface-confined Ullmann coupling. <i>Nanoscale</i> , 2019 , 11, 7682-7689	7.7	19
259	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and ex Situ Characterization. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2184-2192	5.6	49
258	Carbon nanotube knots. AIP Advances, 2019 , 9, 025030	1.5	5
257	Phonon Anharmonicity in Few-Layer Black Phosphorus. ACS Nano, 2019, 13, 10456-10468	16.7	18
256	Naphthylenes: 1D and 2D carbon allotropes based on naphthyl units. <i>Carbon</i> , 2019 , 153, 792-803	10.4	7
255	Effect of substitutional impurities on vibrational properties of zircon: a first-principles study. Journal of Physics Condensed Matter, 2019 , 31, 455402	1.8	1
254	Direct Observation of Symmetry-Dependent Electron-Phonon Coupling in Black Phosphorus. Journal of the American Chemical Society, 2019 , 141, 18994-19001	16.4	10
253	Electronic properties of tetragraphene nanoribbons. <i>Physical Review Materials</i> , 2019 , 3,	3.2	7
252	Structural and electronic properties of nanotubes constructed from fragmented fullerenes. <i>Carbon</i> , 2019 , 147, 616-627	10.4	4
251	Molecular Dynamics Investigation of Polylysine Peptide Translocation through MoS Nanopores. Journal of Physical Chemistry B, 2019 , 123, 2342-2353	3.4	11
250	First-principles study of the thermodynamic and vibrational properties of ReS2 under pressure. <i>Physical Review B</i> , 2019 , 100,	3.3	5
249	Spin dependent transport in hybrid one dimensional BNC systems. <i>Semiconductor Science and Technology</i> , 2019 , 34, 015004	1.8	1
248	Shell model extension to the valence force field: application to single-layer black phosphorus. <i>Physical Chemistry Chemical Physics</i> , 2018 , 21, 322-328	3.6	5
247	A carbon science perspective in 2018: Current achievements and future challenges. <i>Carbon</i> , 2018 , 132, 785-801	10.4	59
246	Quantum oscillation in carrier transport in two-dimensional junctions. <i>Nanoscale</i> , 2018 , 10, 7912-7917	7.7	5
245	Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). <i>Chemical Communications</i> , 2018 , 54, 1619-1622	5.8	14
244	First-principles simulation of local response in transition metal dichalcogenides under electron irradiation. <i>Nanoscale</i> , 2018 , 10, 2388-2397	7.7	22

(2017-2018)

243	Revealing out-of-equilibrium hidden phases in Sr3Ru2O7 by applying stress. <i>Physical Review B</i> , 2018 , 97,	3.3	1
242	Stochasticity in materials structure, properties, and processing-A review. <i>Applied Physics Reviews</i> , 2018 , 5,	17.3	10
241	Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study. <i>Physics and Chemistry of Minerals</i> , 2018 , 45, 173-184	1.6	8
240	Engineering of robust topological quantum phases in graphene nanoribbons. <i>Nature</i> , 2018 , 560, 209-21	3 50.4	227
239	Finite temperature stability of single-layer black and blue phosphorus adsorbed on Au(1 1 1): a first-principles study. <i>2D Materials</i> , 2018 , 5, 035044	5.9	11
238	High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device. <i>Journal of Magnetism and Magnetic Materials</i> , 2018 , 451, 532-539	2.8	3
237	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS2 Nanosheets. <i>Advanced Functional Materials</i> , 2018 , 28, 1801286	15.6	23
236	On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. <i>ACS Nano</i> , 2017 , 11, 1380-1388	16.7	196
235	Quantum-Confined Stark Effect of Individual Defects in a van der Waals Heterostructure. <i>Nano Letters</i> , 2017 , 17, 2253-2258	11.5	55
234	Pressure Tuning of Bromine Ionic States in Double-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 10609-10619	3.8	6
233	Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra. <i>ACS Nano</i> , 2017 , 11, 6652-6660	16.7	78
232	Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene. <i>ACS Nano</i> , 2017 , 11, 6301-6311	16.7	31
231	Quantum Dots in Graphene Nanoribbons. <i>Nano Letters</i> , 2017 , 17, 4277-4283	11.5	74
230	Quantum confinement in black phosphorus-based nanostructures. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 283001	1.8	15
229	Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4671-4674	16.4	44
228	Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy. <i>Nano Letters</i> , 2017 , 17, 2197-2203	11.5	72
227	Charged defects in two-dimensional semiconductors of arbitrary thickness and geometry: Formulation and application to few-layer black phosphorus. <i>Physical Review B</i> , 2017 , 96,	3.3	20
226	Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. <i>Nanoscale</i> , 2017 , 9, 15340-15355	7.7	32

225	Predicting hidden bulk phases from surface phases in bilayered SrRuO. Scientific Reports, 2017, 7, 1026	54.9	3
224	Seamless Staircase Electrical Contact to Semiconducting Graphene Nanoribbons. <i>Nano Letters</i> , 2017 , 17, 6241-6247	11.5	51
223	One- and two-dimensional carbon nanostructures based on unfolded buckyballs: An ab initio investigation of their electronic properties. <i>Physical Review B</i> , 2017 , 95,	3.3	10
222	Anomalous vibrational modes in few layer WTe 2 revealed by polarized Raman scattering and first-principles calculations. <i>2D Materials</i> , 2017 , 4, 035024	5.9	21
221	Half-metallic ferromagnetism in Sr3Ru2O7. <i>Physical Review B</i> , 2017 , 95,	3.3	8
220	On-Surface Cyclization of ortho-Dihalotetracenes to Four- and Six-Membered Rings. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17617-17623	16.4	52
219	Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. <i>ACS Nano</i> , 2017 , 11, 11777-11802	16.7	109
218	Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties. <i>ACS Nano</i> , 2017 , 11, 7494-7507	16.7	29
217	Atomic-layered MoS2 on SiO2 under high pressure: Bimodal adhesion and biaxial strain effects. <i>Physical Review Materials</i> , 2017 , 1,	3.2	16
216	Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes. <i>Physical Review Materials</i> , 2017 , 1,	3.2	19
215	Phonon-Enabled Carrier Transport of Localized States at Non-Polar Semiconductor Surfaces: A First-Principles-Based Prediction. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3548-53	6.4	5
214	Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16696-16702	16.4	63
213	Electronic, vibrational, Raman, and scanning tunneling microscopy signatures of two-dimensional boron nanomaterials. <i>Physical Review B</i> , 2016 , 94,	3.3	11
212	Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. <i>Advanced Materials</i> , 2016 , 28, 9735-9743	24	145
211	Electronic, structural, and magnetic properties of LaMnO3 phase transition at high temperature. <i>Physical Review B</i> , 2016 , 93,	3.3	27
210	Uniaxial pressure-induced half-metallic ferromagnetic phase transition in LaMnO3. <i>Physical Review B</i> , 2016 , 93,	3.3	15
209	Physical properties of low-dimensional sp2-based carbon nanostructures. <i>Reviews of Modern Physics</i> , 2016 , 88,	40.5	127
208	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9881-5	16.4	17

(2015-2016)

207	The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. <i>Nature Communications</i> , 2016 , 7, 11504	17.4	79
206	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. <i>Angewandte Chemie</i> , 2016 , 128, 10035-1	0,089	6
205	Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2. <i>Nano Letters</i> , 2016 , 16, 1435-44	11.5	130
204	Twisted MoSeBilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy. <i>ACS Nano</i> , 2016 , 10, 2736-44	16.7	95
203	Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano, 2016, 10, 4134-42	16.7	226
202	Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. <i>Nano Letters</i> , 2016 , 16, 2260-7	11.5	266
201	Investigating Orientational Defects in Energetic Material RDX Using First-Principles Calculations. Journal of Physical Chemistry A, 2016 , 120, 1917-24	2.8	6
200	Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 315-322	7.1	171
199	Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. <i>Nature Communications</i> , 2016 , 7, 10235	17.4	79
198	Electronic, transport, and magnetic properties of punctured carbon nanotubes. <i>Physical Review B</i> , 2016 , 94,	3.3	2
197	Controlled Sculpture of Black Phosphorus Nanoribbons. ACS Nano, 2016, 10, 5687-95	16.7	84
196	Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1526-33	6.4	40
195	Graphene ripples as a realization of a two-dimensional Ising model: A scanning tunneling microscope study. <i>Physical Review B</i> , 2015 , 91,	3.3	19
194	Improved all-carbon spintronic device design. Scientific Reports, 2015, 5, 7634	4.9	38
193	Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. <i>ACS Nano</i> , 2015 , 9, 6333-42	16.7	121
192	Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. <i>Nano Letters</i> , 2015 , 15, 408	0 18.5	154
191	Temperature-dependent and bistable current-voltage measurements in zinc porphyrin molecular junctions. <i>ACS Applied Materials & Districtions</i> , 2015, 7, 10085-90	9.5	4
190	Molecular selectivity of graphene-enhanced Raman scattering. <i>Nano Letters</i> , 2015 , 15, 2892-901	11.5	136

189	Ultrasensitive gas detection of large-area boron-doped graphene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14527-32	11.5	146
188	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-39	16.7	1581
187	Charge carrier transport and separation in pristine and nitrogen-doped graphene nanowiggle heterostructures. <i>Carbon</i> , 2015 , 95, 833-842	10.4	13
186	On-Surface Synthesis of BN-Substituted Heteroaromatic Networks. ACS Nano, 2015, 9, 9228-35	16.7	64
185	Elastic, plastic, and fracture mechanisms in graphene materials. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 373002	1.8	22
184	Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15511-7	16.4	97
183	Up and down translocation events and electric double-layer formation inside solid-state nanopores. <i>Physical Review E</i> , 2015 , 92, 022715	2.4	3
182	(Invited) Microscopic Studies of Black Phosphorus and Its Field-Effect Transistors. <i>ECS Transactions</i> , 2015 , 69, 93-104	1	
181	Electronic, structural, and substrate effect properties of single-layer covalent organic frameworks. <i>Journal of Chemical Physics</i> , 2015 , 142, 184708	3.9	15
180	DNA Translocation in Nanometer Thick Silicon Nanopores. ACS Nano, 2015, 9, 6555-64	16.7	62
179	Electronic transport of recrystallized freestanding graphene nanoribbons. ACS Nano, 2015, 9, 3510-20	16.7	43
178	Atomically Precise Graphene Nanoribbon Heterojunctions for Excitonic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 775-783	3.8	28
177	Electrolyte Diffusion in Gyroidal Nanoporous Carbon. Journal of Physical Chemistry C, 2015, 119, 2896-2	998	6
176	First-principles Raman spectra of MoS2, WS2 and their heterostructures. <i>Nanoscale</i> , 2014 , 6, 5394-401	7.7	261
175	Electronic transport properties in graphene oxide frameworks. <i>Physical Review B</i> , 2014 , 89,	3.3	9
174	Nonlinear photon-assisted tunneling transport in optical gap antennas. <i>Nano Letters</i> , 2014 , 14, 2330-8	11.5	53
173	Electronic bandgap and edge reconstruction in phosphorene materials. <i>Nano Letters</i> , 2014 , 14, 6400-6	11.5	365
172	Reply to "comment on 'insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization'". <i>ACS Nano</i> , 2014 , 8, 1969-71	16.7	17

171	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900	28.7	443
170	Electronic and magnetic structures of coronene-based graphitic nanoribbons. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3603-9	3.6	8
169	Interfacial properties and design of functional energy materials. <i>Accounts of Chemical Research</i> , 2014 , 47, 3395-405	24.3	13
168	Carbon kagome lattice and orbital-frustration-induced metal-insulator transition for optoelectronics. <i>Physical Review Letters</i> , 2014 , 113, 085501	7.4	38
167	Emergent magnetism in irradiated graphene nanostructures. <i>Carbon</i> , 2014 , 78, 196-203	10.4	7
166	Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. <i>Nano Letters</i> , 2014 , 14, 5500-8	11.5	168
165	Tunable water desalination across graphene oxide framework membranes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 8646-54	3.6	159
164	Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons. <i>Applied Sciences (Switzerland)</i> , 2014 , 4, 351-365	2.6	1
163	Electronic transport in three-terminal triangular carbon nanopatches. <i>Nanotechnology</i> , 2014 , 25, 04570	063.4	3
162	Quantifying energetics of topological frustration in carbon nanostructures. <i>Physical Review B</i> , 2014 , 89,	3.3	9
161	Electronic properties of three-terminal graphitic nanowiggles. <i>Physical Review B</i> , 2014 , 90,	3.3	2
160	Role of antiferromagnetic ordering in the (1½) surface reconstruction of Ca(Fe(1-x)Co(x))2As2. <i>Physical Review Letters</i> , 2014 , 112, 077205	7.4	6
159	Nanoribbons: Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv. Funct. Mater. 30/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3714-3714	15.6	
158	Electronic and thermoelectric properties of assembled graphene nanoribbons with elastic strain and structural dislocation. <i>Applied Physics Letters</i> , 2013 , 102, 143101	3.4	25
157	A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. <i>Nanoscale</i> , 2013 , 5, 10212-8	7.7	10
156	Quasiparticle band gaps of graphene nanowiggles and their magnetism on Au(111). <i>Physical Review B</i> , 2013 , 88,	3.3	14
155	Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. <i>Advanced Functional Materials</i> , 2013 , 23, 3755-3762	15.6	28
154	Electronic Transport in Graphitic Carbon Nanoribbons 2013 , 319-346		2

153	Patchwork algorithm for the parallel computation of the Green® function in open systems. <i>Journal of Computational Electronics</i> , 2013 , 12, 123-133	1.8	14
152	Molecular Dynamics Simulations of Graphene Oxide Frameworks. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 4890-900	6.4	27
151	Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 76-82	3.1	8
150	Nanodrilling: Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages (Part. Part. Syst. Charact. 1/2013). <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 75-	7ĝ.1	
149	Opening a large band gap for graphene by covalent addition. <i>Chemical Physics Letters</i> , 2013 , 555, 1-6	2.5	15
148	Modern Theories of Carbon-Based Electrochemical Capacitors 2013 , 167-206		6
147	Electronic, Thermal, and Structural Properties of Graphene Oxide Frameworks. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8276-8281	3.8	22
146	Edge-edge interactions in stacked graphene nanoplatelets. ACS Nano, 2013, 7, 2834-41	16.7	25
145	Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons. <i>Nanotechnology</i> , 2013 , 24, 235701	3.4	9
144	Self-organized and cu-coordinated surface linear polymerization. Scientific Reports, 2013, 3, 2102	4.9	23
143	Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization. <i>ACS Nano</i> , 2013 , 7, 8190-8	16.7	164
142	Defect-Driven Restructuring of TiO2 Surface and Modified Reactivity Toward Deposited Gold Atoms. <i>Catalysts</i> , 2013 , 3, 276-287	4	4
141	Electronic and transport properties of graphene nanoribbon barbell-shaped heterojunctions. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 2417-2423	1.3	3
140	Dynamical properties of carbon nanotube welding into X junctions. <i>Physical Review B</i> , 2013 , 88,	3.3	6
139	Asymmetric electron transport and highest occupied molecular orbital assisted tunneling through Zn-porphyrin molecular junctions. <i>Applied Physics Letters</i> , 2013 , 103, 173101	3.4	6
138	Modeling and Simulation of Electron Transport at the Nanoscale: Illustrations in Low-Dimensional Carbon Nanostructures. <i>Advances in Atom and Single Molecule Machines</i> , 2013 , 123-133	Ο	
137	Electronic transport properties of assembled carbon nanoribbons. ACS Nano, 2012, 6, 6483-91	16.7	25
136	Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1732-7	6.4	63

135	Electronic properties of two-dimensional covalent organic frameworks. <i>Journal of Chemical Physics</i> , 2012 , 137, 244703	3.9	44
134	Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons. <i>Nano Letters</i> , 2012 , 12, 1928-33	11.5	97
133	Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects. <i>Physical Review B</i> , 2012 , 86,	3.3	42
132	Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges. <i>ACS Nano</i> , 2012 , 6, 2261-72	16.7	48
131	Structural and electronic properties of graphitic nanowiggles. <i>Physical Review B</i> , 2012 , 85,	3.3	21
130	Advancing Understanding and Design of Functional Materials Through Theoretical and Computational Chemical Physics 2012 , 209-278		3
129	Geometric and Electronic Structure of Closed Graphene Edges. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2097-2102	6.4	16
128	Can computational approaches aid in untangling the inherent complexity of practical organic photovoltaic systems?. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 1071-1089	2.6	28
127	Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. <i>Scientific Reports</i> , 2012 , 2, 363	4.9	300
126	Nanoscale Ferroelectricity in Crystalline EGlycine. Advanced Functional Materials, 2012, 22, 2996-3003	15.6	94
125	Enhanced thermoelectric figure of merit in assembled graphene nanoribbons. <i>Physical Review B</i> , 2012 , 86,	3.3	68
124	Facet-insensitive graphene growth on copper. <i>Physical Review B</i> , 2012 , 85,	3.3	43
123	Millimeter-long carbon nanotubes: outstanding electron-emitting sources. ACS Nano, 2011, 5, 5072-7	16.7	44
122	Complex capacitance scaling in ionic liquids-filled nanopores. ACS Nano, 2011, 5, 9044-51	16.7	161
121	Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. <i>Physical Review B</i> , 2011 , 83,	3.3	117
120	Emergence of atypical properties in assembled graphene nanoribbons. <i>Physical Review Letters</i> , 2011 , 107, 135501	7.4	65
119	Quantum transport in graphene nanonetworks. <i>Nano Letters</i> , 2011 , 11, 3058-64	11.5	55
118	Ultrathin planar graphene supercapacitors. <i>Nano Letters</i> , 2011 , 11, 1423-7	11.5	1020

117	A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14723-34	3.6	75
116	Theory of zwitterionic molecular-based organic magnets. <i>Chemical Physics Letters</i> , 2011 , 511, 294-298	2.5	7
115	Graphene edges: a review of their fabrication and characterization. <i>Nanoscale</i> , 2011 , 3, 86-95	7.7	353
114	The importance of ion size and electrode curvature on electrical double layers in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 1152-61	3.6	151
113	Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. <i>Nanoscale</i> , 2011 , 3, 1008-13	7.7	74
112	Cyclo-biphenalenyl Biradicaloid Molecular Materials: Conformation, Tautomerization, Magnetism, and Thermochromism <i>Chemistry of Materials</i> , 2011 , 23, 874-885	9.6	15
111	Electronic transport properties of carbon nanotoroids. <i>Nanotechnology</i> , 2011 , 22, 075701	3.4	6
110	Evaluating the characteristics of multiwall carbon nanotubes. <i>Carbon</i> , 2011 , 49, 2581-2602	10.4	769
109	Electronic transmission selectivity in multiterminal graphitic nanorings. <i>Applied Physics Letters</i> , 2011 , 98, 112111	3.4	5
108	Evidence of Coulomb blockade behavior in a quasi-zero-dimensional quantum well on TiO2 surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 14968-72	11.5	1
107	Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors. <i>Journal of Materials Research</i> , 2010 , 25, 1469-1475	2.5	46
106	Electron transport in multiterminal molecular devices: A density functional theory study. <i>Physical Review B</i> , 2010 , 81,	3.3	11
105	Computational modeling of carbon nanostructures for energy storage applications 2010,		1
104	Modern Theories of Carbon-Based Electrochemical Capacitors: A Short Review 2010 ,		2
103	Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. <i>ACS Nano</i> , 2010 , 4, 2382-90	16.7	150
102	Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. <i>Physical Review Letters</i> , 2010 , 105, 236803	7.4	56
101	Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18012-18016	3.8	48
100	Controlling edge morphology in graphene layers using electron irradiation: from sharp atomic edges to coalesced layers forming loops. <i>Physical Review Letters</i> , 2010 , 105, 045501	7.4	50

99	Negative differential resistance in C60-based electronic devices. ACS Nano, 2010, 4, 7205-10	16.7	49
98	Mesoscopic metal-insulator transition at ferroelastic domain walls in VO2. ACS Nano, 2010, 4, 4412-9	16.7	63
97	Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. <i>Journal of Materials Research</i> , 2010 , 25, 1525-1531	2.5	121
96	Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 11200-4	11.5	110
95	Oxygen-induced surface reconstruction of SrRuO3 and its effect on the BaTiO3 interface. <i>ACS Nano</i> , 2010 , 4, 4190-6	16.7	43
94	Structure and dynamics of electrical double layers in organic electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 5468-79	3.6	84
93	Structure and charging kinetics of electrical double layers at large electrode voltages. <i>Microfluidics and Nanofluidics</i> , 2010 , 8, 703-708	2.8	17
92	Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling. <i>MRS Bulletin</i> , 2009 , 34, 643-647	3.2	78
91	The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y-Junctions to Sea-Urchin-Like Structures. <i>Advanced Functional Materials</i> , 2009 , 19, 1193-1199	15.6	44
90	Bright photoluminescence from the inner tubes of "peapod"-derived double-walled carbon nanotubes. <i>Small</i> , 2009 , 5, 2678-82	11	35
89	A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 97-118	2.1	64
88	Electronic transport of silicon nanowires with surface defects. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 3705-3710	2.1	3
87	Nanoclusters of TiO2 wetted with gold. Surface Science, 2009, 603, 3131-3135	1.8	7
86	The importance of defects for carbon nanoribbon based electronics. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 181-183	2.5	8
85	Properties of one-dimensional molybdenum nanowires in a confined environment. <i>Nano Letters</i> , 2009 , 9, 1487-92	11.5	37
84	Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. <i>Science</i> , 2009 , 323, 1701-5	33.3	592
83	Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes. <i>Nano Letters</i> , 2009 , 9, 2267-72	11.5	121
82	Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects. <i>ACS Nano</i> , 2009 , 3, 3606-	·1126.7	52

81	First-principles methodology for quantum transport in multiterminal junctions. <i>Journal of Chemical Physics</i> , 2009 , 131, 164105	3.9	20
80	Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4591-5	11.5	100
79	Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes. <i>ACS Nano</i> , 2009 , 3, 1913-21	16.7	191
78	Electronic flexoelectricity in low-dimensional systems. <i>Physical Review B</i> , 2008 , 77,	3.3	135
77	Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics. <i>ACS Nano</i> , 2008 , 2, 2585-91	16.7	48
76	Theoretical study of the vibrational edge modes in graphene nanoribbons. <i>Physical Review B</i> , 2008 , 78,	3.3	74
75	Electrical Rectification in Betaine Derivatives. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12008-12011	3.8	9
74	Electron transport in open systems from finite-size calculations: Examination of the principal layer method applied to linear gold chains. <i>Journal of Chemical Physics</i> , 2008 , 128, 154713	3.9	3
73	A single molecule rectifier with strong push-pull coupling. <i>Journal of Chemical Physics</i> , 2008 , 129, 20470	1 3.9	16
72	Electron transport properties of ordered networks using carbon nanotubes. <i>Nanotechnology</i> , 2008 , 19, 315704	3.4	23
71	New insight into carbon-nanotube electronic-structure selectivity. Small, 2008, 4, 2035-42	11	20
70	Effect of phase-breaking events on electron transport in mesoscopic and nanodevices. <i>International Journal of Quantum Chemistry</i> , 2008 , 108, 2896-2905	2.1	2
69	A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. <i>Chemistry - A European Journal</i> , 2008 , 14, 6614-26	4.8	465
68	Theoretical model for nanoporous carbon supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 520-4	16.4	475
67	An atomistic branching mechanism for carbon nanotubes: sulfur as the triggering agent. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2948-53	16.4	69
66	Theoretical Model for Nanoporous Carbon Supercapacitors. <i>Angewandte Chemie</i> , 2008 , 120, 530-534	3.6	57
65	An Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent. <i>Angewandte Chemie</i> , 2008 , 120, 2990-2995	3.6	4
64	Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. <i>ACS Nano</i> , 2008 , 2, 441-8	16.7	165

(2006-2008)

63	Enhancement of the transverse conductance in DNA nucleotides. <i>Journal of Chemical Physics</i> , 2008 , 128, 041103	3.9	45
62	Benzo-homologated nucleobases in a nanotube-electrode set-up for DNA sequencing. <i>Nanotechnology</i> , 2007 , 18, 424019	3.4	8
61	Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction. <i>Physical Review B</i> , 2007 , 76,	3.3	146
60	Investigation of the nanoscale self-assembly of donor-Eacceptor molecules. <i>International Journal of Quantum Chemistry</i> , 2007 , 107, 2233-2242	2.1	7
59	A New Class of Supramolecular Wires. Journal of Physical Chemistry C, 2007, 111, 18912-18916	3.8	11
58	Covalent 2D and 3D networks from 1D nanostructures: designing new materials. <i>Nano Letters</i> , 2007 , 7, 570-6	11.5	191
57	Reoxidation of TiO2(110) via Ti interstitials and line defects. <i>Physical Review B</i> , 2007 , 75,	3.3	61
56	Nonvolatile memory elements based on the intercalation of organic molecules inside carbon nanotubes. <i>Physical Review Letters</i> , 2007 , 98, 056401	7.4	23
55	Atomic scale design of nanostructures. <i>Molecular Physics</i> , 2007 , 105, 147-156	1.7	3
54	Tuning the conductance of carbon nanotubes with encapsulated molecules. <i>Nanotechnology</i> , 2007 , 18, 424032	3.4	3
53	Structure and stability of small boron and boron oxide clusters. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 6539-51	2.8	62
52	Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. <i>ACS Nano</i> , 2007 , 1, 369-75	16.7	185
51	Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. <i>Physical Review B</i> , 2007 , 76,	3.3	263
50	Selective tuning of the electronic properties of coaxial nanocables through exohedral doping. <i>Nano Letters</i> , 2007 , 7, 2383-8	11.5	41
49	Theory of Scanning Probe Microscopy 2007 , 455-479		
48	Adsorption, desorption, and dissociation of benzene on TiO2(110) and PdIIiO2(110): Experimental characterization and first-principles calculations. <i>Physical Review B</i> , 2006 , 74,	3.3	16
47	Surface reconstructions of TiO2(110) driven by suboxides. <i>Physical Review Letters</i> , 2006 , 96, 226105	7.4	46
46	Scanning frequency mixing microscopy of high-frequency transport behavior at electroactive interfaces. <i>Applied Physics Letters</i> , 2006 , 88, 143128	3.4	8

45	Density functional theory studies of quantum transport in molecular systems. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 3334-3342	2.1	3
44	ELECTRONIC TRANSPORT IN NANOTUBES AND THROUGH JUNCTIONS OF NANOTUBES 2006 , 123-142		1
43	Regularly Curved Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 523-53	33 8	2
42	Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance. <i>Journal of Chemical Physics</i> , 2005 , 123, 24705	3.9	59
41	Electron transport in molecular systems. <i>Journal of Physics: Conference Series</i> , 2005 , 16, 283-286	0.3	2
40	Nonequilibrium quantum transport properties of organic molecules on silicon. <i>Physical Review Letters</i> , 2005 , 95, 206805	7.4	60
39	Surface Defect-mediated Reactivity of Au/TiO2(110). <i>Materials Research Society Symposia Proceedings</i> , 2005 , 876, 1		1
38	Quantitative analysis of electronic properties of carbon nanotubes by scanning probe microscopy: from atomic to mesoscopic length scales. <i>Physical Review Letters</i> , 2004 , 93, 246801	7.4	20
37	. Computing in Science and Engineering, 2004 , 6, 12-21	1.5	15
36	Nonlinear transport imaging by scanning impedance microscopy. <i>Applied Physics Letters</i> , 2004 , 85, 4240	-4242	15
35	Theory of Scanning Probe Microscopy of Carbon Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 838, 79		
34	How to Identify Haeckelite Structures: A Theoretical Study of Their Electronic and Vibrational Properties. <i>Nano Letters</i> , 2004 , 4, 805-810	11.5	56
33	Scanning tunnelling microscopy of carbon nanotubes. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 2187-203	3	9
32	Response to Comment on Intrinsic electron transport properties of carbon nanotube Y junctions [Appl. Phys. Lett. 83, 1674 (2003)]. <i>Applied Physics Letters</i> , 2003 , 83, 1676-1677	3.4	2
31	Computation of STM images of carbon nanotubes. <i>International Journal of Quantum Chemistry</i> , 2003 , 95, 493-503	2.1	16
30	Fullerene Coalescence in Nanopeapods: A Path to Novel Tubular Carbon. <i>Nano Letters</i> , 2003 , 3, 1037-10	0 42 .5	166
29	Spontaneous polarization and piezoelectricity in boron nitride nanotubes. <i>Physical Review B</i> , 2003 , 67,	3.3	170
28	Simulation of STM Images and STS Spectra of Carbon Nanotubes 2002 , 17-33		

27	STM study of a grain boundary in graphite. Surface Science, 2002, 511, 319-322	1.8	140
26	Intrinsic electron transport properties of carbon nanotube Y-junctions. <i>Applied Physics Letters</i> , 2002 , 81, 5234-5236	3.4	66
25	Single electron tunneling of nanoscale TiSi2 islands on Si. Journal of Applied Physics, 2002, 92, 3332-333	7 2.5	28
24	Charge transport through small silicon clusters. <i>Physical Review B</i> , 2002 , 66,	3.3	52
23	Field Emission Properties of BN/C and BN@C Hybrid Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 739, 571		
22	Electronic and field emission properties of boron nitride/carbon nanotube superlattices. <i>Applied Physics Letters</i> , 2002 , 81, 46-48	3.4	92
21	Mechanical and Electrical Properties of Nanotubes. Annual Review of Materials Research, 2002, 32, 347-2	375 .8	299
20	Enhanced Electron Field Emission in B-doped Carbon Nanotubes. <i>Nano Letters</i> , 2002 , 2, 1191-1195	11.5	125
19	Ab initio investigations of lithium diffusion in carbon nanotube systems. <i>Physical Review Letters</i> , 2002 , 88, 075506	7.4	234
18	Structural and electronic properties of carbon nanotube tapers. <i>Physical Review B</i> , 2001 , 64,	3.3	42
17	Li Uptake in Carbon Nanotube Systems: A First Principles Investigation. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 706, 1		
16	Interpretation of the STM Images of Carbon Nanotubes 2001 , 233-244		3
15	Measuring the helicity of carbon nanotubes. <i>Carbon</i> , 2000 , 38, 1713-1721	10.4	37
14	Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes. <i>Carbon</i> , 2000 , 38, 1729-1733	10.4	46
13	Atomic structure of carbon nanotubes from scanning tunneling microscopy. <i>Physical Review B</i> , 2000 , 61, 2991-2996	3.3	144
12	Electronic structure of polychiral carbon nanotubes. <i>Physical Review B</i> , 2000 , 62, 5129-5135	3.3	66
11	Influence of structural defects on Fresnel projection microscope images of carbon nanotubes: Implications for the characterization of nanoscale devices. <i>Physical Review B</i> , 2000 , 61, R13385-R13388	3.3	6
10	Scanning tunneling spectroscopy signature of finite-size and connected nanotubes: A tight-binding study. <i>Physical Review B</i> , 1999 , 60, 7792-7795	3.3	56

9	Structural properties of junctions between two carbon nanotubes. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 68, 263-266	2.6	16
8	In Situ Monitoring of the Self-Assembly of p-Nitroanilino Terminated Thiol on Gold: a Study by IR-vis Sum-Frequency Generation Spectroscopy. <i>Physica Status Solidi A</i> , 1999 , 175, 129-136		15
7	Elastic deformation of a carbon nanotube adsorbed on a stepped surface. <i>Carbon</i> , 1998 , 36, 701-704	10.4	6
6	Energetics of bent carbon nanotubes. <i>Physical Review B</i> , 1998 , 57, 2586-2591	3.3	56
5	Atomic and electronic structures of large and small carbon tori. <i>Physical Review B</i> , 1998 , 57, 14886-148	8 90 .3	74
4	Tight-Binding Computation of the STM Image of Carbon Nanotubes. <i>Physical Review Letters</i> , 1998 , 81, 5588-5591	7.4	110
3	Electronic properties of nanotube junctions 1998,		1
2	Optimizing the Electronic Properties of Carbon Nanotubes using Amphoteric Doping29-46		
1	Electronic localization in small-angle twisted bilayer graphene. 2D Materials,	5.9	7