Vincent Meunier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5752104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.	14.6	2,069
2	Ultrathin Planar Graphene Supercapacitors. Nano Letters, 2011, 11, 1423-1427.	9.1	1,145
3	Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, 49, 2581-2602.	10.3	951
4	Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 2009, 323, 1701-1705.	12.6	655
5	A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry - A European Journal, 2008, 14, 6614-6626.	3.3	545
6	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	31.5	528
7	Theoretical Model for Nanoporous Carbon Supercapacitors. Angewandte Chemie - International Edition, 2008, 47, 520-524.	13.8	526
8	Electronic Bandgap and Edge Reconstruction in Phosphorene Materials. Nano Letters, 2014, 14, 6400-6406.	9.1	459
9	Graphene edges: a review of their fabrication and characterization. Nanoscale, 2011, 3, 86-95.	5.6	410
10	Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 2018, 560, 209-213.	27.8	397
11	First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale, 2014, 6, 5394.	5.6	348
12	Mechanical and Electrical Properties of Nanotubes. Annual Review of Materials Research, 2002, 32, 347-375.	9.3	343
13	Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports, 2012, 2, 363.	3.3	329
14	Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Letters, 2016, 16, 2260-2267.	9.1	328
15	Raman Shifts in Electron-Irradiated Monolayer MoS ₂ . ACS Nano, 2016, 10, 4134-4142.	14.6	311
16	Massless fermions in multilayer graphitic systems with misoriented layers: <i>Ab initio</i> calculations and experimental fingerprints. Physical Review B, 2007, 76, .	3.2	295
17	On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. ACS Nano, 2017, 11, 1380-1388.	14.6	270
18	Ab InitioInvestigations of Lithium Diffusion in Carbon Nanotube Systems. Physical Review Letters, 2002, 88, 075506.	7.8	254

#	Article	IF	CITATIONS
19	Ultrathin nanosheets of CrSiTe ₃ : a semiconducting two-dimensional ferromagnetic material. Journal of Materials Chemistry C, 2016, 4, 315-322.	5.5	235
20	Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorusâ~'Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2009, 3, 1913-1921.	14.6	228
21	Probing the Interlayer Coupling of Twisted Bilayer MoS ₂ Using Photoluminescence Spectroscopy. Nano Letters, 2014, 14, 5500-5508.	9.1	228
22	Covalent 2D and 3D Networks from 1D Nanostructures:Â Designing New Materials. Nano Letters, 2007, 7, 570-576.	9.1	223
23	Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Physical Review B, 2003, 67, •	3.2	211
24	Transitionâ€Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Advanced Materials, 2016, 28, 9735-9743.	21.0	208
25	Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano, 2007, 1, 369-375.	14.6	207
26	Tunable water desalination across graphene oxide framework membranes. Physical Chemistry Chemical Physics, 2014, 16, 8646.	2.8	194
27	Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorusâ^'Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2008, 2, 441-448.	14.6	192
28	Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization. ACS Nano, 2013, 7, 8190-8198.	14.6	190
29	Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores. ACS Nano, 2011, 5, 9044-9051.	14.6	188
30	Fullerene Coalescence in Nanopeapods:  A Path to Novel Tubular Carbon. Nano Letters, 2003, 3, 1037-1042.	9.1	185
31	Ion Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance. ACS Nano, 2010, 4, 2382-2390.	14.6	183
32	Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 4080-4088.	9.1	182
33	Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. ACS Nano, 2017, 11, 11777-11802.	14.6	179
34	Molecular Selectivity of Graphene-Enhanced Raman Scattering. Nano Letters, 2015, 15, 2892-2901.	9.1	177
35	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	7.1	177
36	Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS ₂ . Nano Letters, 2016, 16, 1435-1444.	9.1	177

#	Article	IF	CITATIONS
37	The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 1152-1161.	2.8	173
38	Atomic structure of carbon nanotubes from scanning tunneling microscopy. Physical Review B, 2000, 61, 2991-2996.	3.2	164
39	Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction. Physical Review B, 2007, 76, .	3.2	164
40	Physical properties of low-dimensional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>s</mml:mi><mml:mi>p</mml:mi>carbon nanostructures. Reviews of Modern Physics, 2016, 88, .</mml:mrow></mml:msup></mml:mrow></mml:math>	w> 4តាតាl: n	nro v sox mml:n
41	STM study of a grain boundary in graphite. Surface Science, 2002, 511, 319-322.	1.9	158
42	Electronic flexoelectricity in low-dimensional systems. Physical Review B, 2008, 77, .	3.2	157
43	Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. ACS Nano, 2015, 9, 6333-6342.	14.6	151
44	Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. Journal of Materials Research, 2010, 25, 1525-1531.	2.6	142
45	Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature, 2021, 590, 405-409.	27.8	139
46	Enhanced Electron Field Emission in B-doped Carbon Nanotubes. Nano Letters, 2002, 2, 1191-1195.	9.1	136
47	Synthesis, Electronic Structure, and Raman Scattering of Phosphorus-Doped Single-Wall Carbon Nanotubes. Nano Letters, 2009, 9, 2267-2272.	9.1	134
48	Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Physical Review B, 2011, 83, .	3.2	124
49	Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials. Journal of the American Chemical Society, 2015, 137, 15511-15517.	13.7	122
50	Tight-Binding Computation of the STM Image of Carbon Nanotubes. Physical Review Letters, 1998, 81, 5588-5591.	7.8	119
51	Nanoscale Ferroelectricity in Crystalline γâ€Glycine. Advanced Functional Materials, 2012, 22, 2996-3003.	14.9	119
52	Electronic and field emission properties of boron nitride/carbon nanotube superlattices. Applied Physics Letters, 2002, 81, 46-48.	3.3	118
53	Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11200-11204.	7.1	117
54	Twisted MoSe ₂ Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy. ACS Nano, 2016, 10, 2736-2744.	14.6	117

#	Article	IF	CITATIONS
55	Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nature Communications, 2020, 11, 2034.	12.8	112
56	Controlled Sculpture of Black Phosphorus Nanoribbons. ACS Nano, 2016, 10, 5687-5695.	14.6	111
57	Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4591-4595.	7.1	110
58	Structure and dynamics of electrical double layers in organic electrolytes. Physical Chemistry Chemical Physics, 2010, 12, 5468.	2.8	107
59	Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis. ACS Catalysis, 2020, 10, 1993-2008.	11.2	106
60	Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra. ACS Nano, 2017, 11, 6652-6660.	14.6	105
61	Topographic and Spectroscopic Characterization of Electronic Edge States in CVD Grown Graphene Nanoribbons. Nano Letters, 2012, 12, 1928-1933.	9.1	104
62	The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Nature Communications, 2016, 7, 11504.	12.8	103
63	Phosphorus and phosphorus–nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. Nanoscale, 2011, 3, 1008-1013.	5.6	102
64	Quantum Dots in Graphene Nanoribbons. Nano Letters, 2017, 17, 4277-4283.	9.1	99
65	Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy. Nano Letters, 2017, 17, 2197-2203.	9.1	92
66	Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. Nature Communications, 2016, 7, 10235.	12.8	91
67	A "counter-charge layer in generalized solvents―framework for electrical double layers in neat and hybrid ionic liquid electrolytes. Physical Chemistry Chemical Physics, 2011, 13, 14723.	2.8	90
68	Theoretical study of the vibrational edge modes in graphene nanoribbons. Physical Review B, 2008, 78, .	3.2	86
69	Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling. MRS Bulletin, 2009, 34, 643-647.	3.5	84
70	Enhanced thermoelectric figure of merit in assembled graphene nanoribbons. Physical Review B, 2012, 86, .	3.2	81
71	Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization. Journal of the American Chemical Society, 2016, 138, 16696-16702.	13.7	81
72	Quantum-Confined Stark Effect of Individual Defects in a van der Waals Heterostructure. Nano Letters, 2017, 17, 2253-2258.	9.1	81

#	Article	IF	CITATIONS
73	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	10.3	80
74	On-Surface Synthesis of BN-Substituted Heteroaromatic Networks. ACS Nano, 2015, 9, 9228-9235.	14.6	78
75	Atomic and electronic structures of large and small carbon tori. Physical Review B, 1998, 57, 14886-14890.	3.2	77
76	Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores. Journal of Physical Chemistry Letters, 2012, 3, 1732-1737.	4.6	77
77	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	10.3	77
78	An Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent. Angewandte Chemie - International Edition, 2008, 47, 2948-2953.	13.8	76
79	DNA Translocation in Nanometer Thick Silicon Nanopores. ACS Nano, 2015, 9, 6555-6564.	14.6	76
80	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and <i>ex Situ</i> Characterization. ACS Applied Nano Materials, 2019, 2, 2184-2192.	5.0	75
81	Intrinsic electron transport properties of carbon nanotube Y-junctions. Applied Physics Letters, 2002, 81, 5234-5236.	3.3	74
82	Electronic structure of polychiral carbon nanotubes. Physical Review B, 2000, 62, 5129-5135.	3.2	73
83	Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. Nature Communications, 2019, 10, 1764.	12.8	73
84	Quantum Transport in Graphene Nanonetworks. Nano Letters, 2011, 11, 3058-3064.	9.1	71
85	A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants. International Journal of Quantum Chemistry, 2009, 109, 97-118.	2.0	70
86	Emergence of Atypical Properties in Assembled Graphene Nanoribbons. Physical Review Letters, 2011, 107, 135501.	7.8	69
87	Mesoscopic Metalâ~'Insulator Transition at Ferroelastic Domain Walls in VO ₂ . ACS Nano, 2010, 4, 4412-4419.	14.6	68
88	Nonlinear Photon-Assisted Tunneling Transport in Optical Gap Antennas. Nano Letters, 2014, 14, 2330-2338.	9.1	68
89	On-Surface Cyclization of <i>ortho</i> -Dihalotetracenes to Four- and Six-Membered Rings. Journal of the American Chemical Society, 2017, 139, 17617-17623.	13.7	68
90	Reoxidation ofTiO2(110)via Ti interstitials and line defects. Physical Review B, 2007, 75, .	3.2	67

#	Article	IF	CITATIONS
91	Nonequilibrium Quantum Transport Properties of Organic Molecules on Silicon. Physical Review Letters, 2005, 95, 206805.	7.8	65
92	Structure and Stability of Small Boron and Boron Oxide Clusters. Journal of Physical Chemistry A, 2007, 111, 6539-6551.	2.5	65
93	How to Identify Haeckelite Structures: A Theoretical Study of Their Electronic and Vibrational Properties. Nano Letters, 2004, 4, 805-810.	9.1	64
94	Seamless Staircase Electrical Contact to Semiconducting Graphene Nanoribbons. Nano Letters, 2017, 17, 6241-6247.	9.1	64
95	Guiding Electrical Current in Nanotube Circuits Using Structural Defects: A Step Forward in Nanoelectronics. ACS Nano, 2008, 2, 2585-2591.	14.6	63
96	Quantum-Interference-Controlled Three-Terminal Molecular Transistors Based on a Single Ring-Shaped Molecule Connected to Graphene Nanoribbon Electrodes. Physical Review Letters, 2010, 105, 236803.	7.8	63
97	Electronic properties of two-dimensional covalent organic frameworks. Journal of Chemical Physics, 2012, 137, 244703.	3.0	63
98	Energetics of bent carbon nanotubes. Physical Review B, 1998, 57, 2586-2591.	3.2	62
99	Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: Electronic properties and quantum conductance. Journal of Chemical Physics, 2005, 123, 024705.	3.0	62
100	Scanning tunneling spectroscopy signature of finite-size and connected nanotubes: A tight-binding study. Physical Review B, 1999, 60, 7792-7795.	3.2	61
101	Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties. Journal of the American Chemical Society, 2017, 139, 4671-4674.	13.7	61
102	Spin Polarized Conductance in Hybrid Graphene Nanoribbons Using 5â^'7 Defects. ACS Nano, 2009, 3, 3606-3612.	14.6	60
103	Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops. Physical Review Letters, 2010, 105, 045501.	7.8	56
104	Charge transport through small silicon clusters. Physical Review B, 2002, 66, .	3.2	55
105	Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.	14.6	54
106	Surface Reconstructions of TiO2(110)Driven by Suboxides. Physical Review Letters, 2006, 96, 226105.	7.8	53
107	Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors. Journal of Materials Research, 2010, 25, 1469-1475.	2.6	53
108	Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors. Journal of Physical Chemistry C, 2010, 114, 18012-18016.	3.1	53

#	Article	IF	CITATIONS
109	Negative Differential Resistance in C ₆₀ -Based Electronic Devices. ACS Nano, 2010, 4, 7205-7210.	14.6	52
110	Improved All-Carbon Spintronic Device Design. Scientific Reports, 2015, 5, 7634.	3.3	52
111	An Environmentally Stable and Leadâ€Free Chalcogenide Perovskite. Advanced Functional Materials, 2020, 30, 2001387.	14.9	52
112	Enhancement of the transverse conductance in DNA nucleotides. Journal of Chemical Physics, 2008, 128, 041103.	3.0	51
113	The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Yâ€Junctions to Seaâ€Urchinâ€Like Structures. Advanced Functional Materials, 2009, 19, 1193-1199.	14.9	51
114	Millimeter-Long Carbon Nanotubes: Outstanding Electron-Emitting Sources. ACS Nano, 2011, 5, 5072-5077.	14.6	50
115	Carbon Kagome Lattice and Orbital-Frustration-Induced Metal-Insulator Transition for Optoelectronics. Physical Review Letters, 2014, 113, 085501.	7.8	49
116	Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes. Carbon, 2000, 38, 1729-1733.	10.3	47
117	Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2016, 7, 1526-1533.	4.6	47
118	Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene. ACS Nano, 2017, 11, 6301-6311.	14.6	46
119	Structural and electronic properties of carbon nanotube tapers. Physical Review B, 2001, 64, .	3.2	45
120	Facet-insensitive graphene growth on copper. Physical Review B, 2012, 85, .	3.2	45
121	Sculpting Artificial Edges in Monolayer MoS ₂ for Controlled Formation of Surface-Enhanced Raman Hotspots. ACS Nano, 2020, 14, 6258-6268.	14.6	45
122	Oxygen-Induced Surface Reconstruction of SrRuO ₃ and Its Effect on the BaTiO ₃ Interface. ACS Nano, 2010, 4, 4190-4196.	14.6	44
123	Electronic Transport of Recrystallized Freestanding Graphene Nanoribbons. ACS Nano, 2015, 9, 3510-3520.	14.6	44
124	Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Advanced Materials, 2020, 32, e1906054.	21.0	44
125	Selective Tuning of the Electronic Properties of Coaxial Nanocables through Exohedral Doping. Nano Letters, 2007, 7, 2383-2388.	9.1	43
126	Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Letters, 2009, 9, 1487-1492.	9.1	43

#	Article	IF	CITATIONS
127	Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects. Physical Review B, 2012, 86, .	3.2	43
128	Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties. ACS Nano, 2017, 11, 7494-7507.	14.6	42
129	lsotope-Engineering the Thermal Conductivity of Two-Dimensional MoS ₂ . ACS Nano, 2019, 13, 2481-2489.	14.6	42
130	Highly Selective, Defect-Induced Photocatalytic CO ₂ Reduction to Acetaldehyde by the Nb-Doped TiO ₂ Nanotube Array under Simulated Solar Illumination. ACS Applied Materials & Interfaces, 2020, 12, 55982-55993.	8.0	39
131	Measuring the helicity of carbon nanotubes. Carbon, 2000, 38, 1713-1721.	10.3	38
132	Bright Photoluminescence from the Inner Tubes of "Peapodâ€â€Derived Doubleâ€Walled Carbon Nanotubes. Small, 2009, 5, 2678-2682.	10.0	38
133	Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale, 2017, 9, 15340-15355.	5.6	38
134	Onâ€5urface Synthesis and Characterization of Aceneâ€Based Nanoribbons Incorporating Fourâ€Membered Rings. Chemistry - A European Journal, 2019, 25, 12074-12082.	3.3	38
135	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13091.	14.6	36
136	Molecular Dynamics Simulations of Graphene Oxide Frameworks. Journal of Chemical Theory and Computation, 2013, 9, 4890-4900.	5.3	35
137	Electronic, structural, and magnetic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaMnO</mml:mi><mml:mn>3transition at high temperature. Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	າໄ 3ງ2 າ > <td>ាាងmsub><</td>	ា ាង msub><
138	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS 2 Nanosheets. Advanced Functional Materials, 2018, 28, 1801286.	14.9	35
139	Atomically Precise Graphene Nanoribbon Heterojunctions for Excitonic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 775-783.	3.1	34
140	First-principles simulation of local response in transition metal dichalcogenides under electron irradiation. Nanoscale, 2018, 10, 2388-2397.	5.6	34
141	Phonon Anharmonicity in Few-Layer Black Phosphorus. ACS Nano, 2019, 13, 10456-10468.	14.6	34
142	Soliton signature in the phonon spectrum of twisted bilayer graphene. 2D Materials, 2020, 7, 025050.	4.4	34
143	Single electron tunneling of nanoscale TiSi2 islands on Si. Journal of Applied Physics, 2002, 92, 3332-3337.	2.5	32
144	Electronic and thermoelectric properties of assembled graphene nanoribbons with elastic strain and structural dislocation. Applied Physics Letters, 2013, 102, .	3.3	31

#	Article	IF	CITATIONS
145	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	14.9	31
146	Electronic Transport Properties of Assembled Carbon Nanoribbons. ACS Nano, 2012, 6, 6483-6491.	14.6	29
147	Can computational approaches aid in untangling the inherent complexity of practical organic photovoltaic systems?. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1071-1089.	2.1	29
148	An unexpected organometallic intermediate in surface-confined Ullmann coupling. Nanoscale, 2019, 11, 7682-7689.	5.6	29
149	Charged defects in two-dimensional semiconductors of arbitrary thickness and geometry: Formulation and application to few-layer black phosphorus. Physical Review B, 2017, 96, .	3.2	28
150	Anomalous vibrational modes in few layer WTe ₂ revealed by polarized Raman scattering and first-principles calculations. 2D Materials, 2017, 4, 035024.	4.4	27
151	Electronic, Thermal, and Structural Properties of Graphene Oxide Frameworks. Journal of Physical Chemistry C, 2013, 117, 8276-8281.	3.1	26
152	Elastic, plastic, and fracture mechanisms in graphene materials. Journal of Physics Condensed Matter, 2015, 27, 373002.	1.8	26
153	Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900343.	1.5	26
154	Electron transport properties of ordered networks using carbon nanotubes. Nanotechnology, 2008, 19, 315704.	2.6	25
155	Edge–Edge Interactions in Stacked Graphene Nanoplatelets. ACS Nano, 2013, 7, 2834-2841.	14.6	25
156	Electronic localization in small-angle twisted bilayer graphene. 2D Materials, 2021, 8, 035046.	4.4	25
157	Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes. Physical Review Materials, 2017, 1, .	2.4	25
158	Nonvolatile Memory Elements Based on the Intercalation of Organic Molecules Inside Carbon Nanotubes. Physical Review Letters, 2007, 98, 056401.	7.8	24
159	Structural and electronic properties of graphitic nanowiggles. Physical Review B, 2012, 85, .	3.2	24
160	Machine-learning models for Raman spectra analysis of twisted bilayer graphene. Carbon, 2020, 169, 455-464.	10.3	24
161	First-principles methodology for quantum transport in multiterminal junctions. Journal of Chemical Physics, 2009, 131, 164105.	3.0	23
162	Structure and charging kinetics of electrical double layers at large electrode voltages. Microfluidics and Nanofluidics, 2010, 8, 703-708.	2.2	23

#	Article	IF	CITATIONS
163	Self-Organized and Cu-Coordinated Surface Linear Polymerization. Scientific Reports, 2013, 3, 2102.	3.3	23
164	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. Angewandte Chemie - International Edition, 2016, 55, 9881-9885.	13.8	23
165	Naphthylenes: 1D and 2D carbon allotropes based on naphthyl units. Carbon, 2019, 153, 792-803.	10.3	23
166	Quantitative Analysis of Electronic Properties of Carbon Nanotubes by Scanning Probe Microscopy: From Atomic to Mesoscopic Length Scales. Physical Review Letters, 2004, 93, 246801.	7.8	22
167	Graphene ripples as a realization of a two-dimensional Ising model: A scanning tunneling microscope study. Physical Review B, 2015, 91, .	3.2	22
168	Quantum confinement in black phosphorus-based nanostructures. Journal of Physics Condensed Matter, 2017, 29, 283001.	1.8	22
169	New Insight into Carbonâ€Nanotube Electronicâ€ S tructure Selectivity. Small, 2008, 4, 2035-2042.	10.0	21
170	Electronic, vibrational, Raman, and scanning tunneling microscopy signatures of two-dimensional boron nanomaterials. Physical Review B, 2016, 94, .	3.2	21
171	Direct Observation of Symmetry-Dependent Electron–Phonon Coupling in Black Phosphorus. Journal of the American Chemical Society, 2019, 141, 18994-19001.	13.7	21
172	Magnetic Proximity Coupling of Quantum Emitters in WSe ₂ to van der Waals Ferromagnets. Nano Letters, 2019, 19, 7301-7308.	9.1	21
173	Reversible Pressure-Induced Partial Phase Transition in Few-Layer Black Phosphorus. Nano Letters, 2020, 20, 5929-5935.	9.1	21
174	Atomic-layered MoS2 on SiO2 under high pressure: Bimodal adhesion and biaxial strain effects. Physical Review Materials, 2017, 1, .	2.4	21
175	Structural properties of junctions between two carbon nanotubes. Applied Physics A: Materials Science and Processing, 1999, 68, 263-266.	2.3	20
176	Adsorption, desorption, and dissociation of benzene onTiO2(110)andPdâ^•TiO2(110): Experimental characterization and first-principles calculations. Physical Review B, 2006, 74, .	3.2	20
177	Excitation to defect-bound band edge states in two-dimensional semiconductors and its effect on carrier transport. Npj Computational Materials, 2019, 5, .	8.7	20
178	Substitutional transition metal doping in MoS ₂ : a first-principles study. Nano Express, 2020, 1, 010008.	2.4	20
179	Geometric and Electronic Structure of Closed Graphene Edges. Journal of Physical Chemistry Letters, 2012, 3, 2097-2102.	4.6	19
180	Reply to "Comment on â€~Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization'― ACS Nano, 2014, 8, 1969-1971.	14.6	19

#	Article	IF	CITATIONS
181	Electronic, structural, and substrate effect properties of single-layer covalent organic frameworks. Journal of Chemical Physics, 2015, 142, 184708.	3.0	19
182	Uniaxial pressure-induced half-metallic ferromagnetic phase transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">LaMnO<mml:mn>3</mml:mn></mml:mi </mml:msub>. Physical Review B, 2016, 93, .</mml:math 	3.2	19
183	Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). Chemical Communications, 2018, 54, 1619-1622.	4.1	19
184	Improved model of ionic transport in 2-D MoS2 membranes with sub-5 nm pores. Applied Physics Letters, 2019, 114, 023107.	3.3	19
185	Carbon science perspective in 2022: Current research and future challenges. Carbon, 2022, 195, 272-291.	10.3	19
186	Opening a large band gap for graphene by covalent addition. Chemical Physics Letters, 2013, 555, 1-6.	2.6	18
187	The effects of substitutional Fe-doping on magnetism in MoS ₂ and WS ₂ monolayers. Nanotechnology, 2021, 32, 095708.	2.6	18
188	Nonlinear transport imaging by scanning impedance microscopy. Applied Physics Letters, 2004, 85, 4240-4242.	3.3	17
189	A single molecule rectifier with strong push-pull coupling. Journal of Chemical Physics, 2008, 129, 204701.	3.0	17
190	Cyclo-biphenalenyl Biradicaloid Molecular Materials: Conformation, Tautomerization, Magnetism, and Thermochromism. Chemistry of Materials, 2011, 23, 874-885.	6.7	17
191	Patchwork algorithm for the parallel computation of the Green's function in open systems. Journal of Computational Electronics, 2013, 12, 123-133.	2.5	17
192	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	10.0	17
193	In Situ Monitoring of the Self-Assembly of p-Nitroanilino Terminated Thiol on Gold: a Study by IR-vis Sum-Frequency Generation Spectroscopy. Physica Status Solidi A, 1999, 175, 129-136.	1.7	16
194	Computation of STM images of carbon nanotubes. International Journal of Quantum Chemistry, 2003, 95, 493-503.	2.0	16
195	Understanding and enhancing polarization in complex materials. Computing in Science and Engineering, 2004, 6, 12-21.	1.2	16
196	Charge carrier transport and separation in pristine and nitrogen-doped graphene nanowiggle heterostructures. Carbon, 2015, 95, 833-842.	10.3	16
197	Quasiparticle band gaps of graphene nanowiggles and their magnetism on Au(111). Physical Review B, 2013, 88, .	3.2	15
198	Stochasticity in materials structure, properties, and processing—A review. Applied Physics Reviews, 2018, 5, .	11.3	15

#	Article	IF	CITATIONS
199	Molecular Dynamics Investigation of Polylysine Peptide Translocation through MoS ₂ Nanopores. Journal of Physical Chemistry B, 2019, 123, 2342-2353.	2.6	15
200	Interfacial Properties and Design of Functional Energy Materials. Accounts of Chemical Research, 2014, 47, 3395-3405.	15.6	14
201	Finite temperature stability of single-layer black and blue phosphorus adsorbed on Au(1 1 1): a first-principles study. 2D Materials, 2018, 5, 035044.	4.4	14
202	In-plane breathing and shear modes in low-dimensional nanostructures. Carbon, 2020, 157, 364-370.	10.3	14
203	Electronic properties of tetragraphene nanoribbons. Physical Review Materials, 2019, 3, .	2.4	14
204	Electron transport in multiterminal molecular devices: A density functional theory study. Physical Review B, 2010, 81, .	3.2	13
205	One- and two-dimensional carbon nanostructures based on unfolded buckyballs: An <i>ab initio</i> investigation of their electronic properties. Physical Review B, 2017, 95, .	3.2	13
206	A New Class of Supramolecular Wires. Journal of Physical Chemistry C, 2007, 111, 18912-18916.	3.1	12
207	A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. Nanoscale, 2013, 5, 10212.	5.6	12
208	Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study. Physics and Chemistry of Minerals, 2018, 45, 173-184.	0.8	12
209	The importance of defects for carbon nanoribbon based electronics. Physica Status Solidi - Rapid Research Letters, 2009, 3, 181-183.	2.4	11
210	Electronic and structural properties of tetragraphenes. Carbon, 2020, 167, 403-413.	10.3	11
211	Scanning tunnelling microscopy of carbon nanotubes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2187-2203.	3.4	10
212	Electrical Rectification in Betaine Derivatives. Journal of Physical Chemistry C, 2008, 112, 12008-12011.	3.1	10
213	Electronic transport properties in graphene oxide frameworks. Physical Review B, 2014, 89, .	3.2	10
214	Electronic and magnetic structures of coronene-based graphitic nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 3603.	2.8	10
215	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi mathvariant="bold">Sr<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="bold">Ru<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="bold">Q<mml:mn>2</mml:mn></mml:mi </mml:msub>Physical</mml:mrow>	3.2	10
216	Review B, 2017, 95, . Structural and electronic properties of nanotubes constructed from fragmented fullerenes. Carbon, 2019, 147, 616-627.	10.3	10

#	Article	IF	CITATIONS
217	Tripentaphenes: two-dimensional acepentalene-based nanocarbon allotropes. Physical Chemistry Chemical Physics, 2020, 22, 23195-23206.	2.8	10
218	Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages. Particle and Particle Systems Characterization, 2013, 30, 76-82.	2.3	9
219	Electronic structure and transport properties of N ₂ ^{<i>AA</i>} -doped armchair and zigzag graphene nanoribbons. Nanotechnology, 2013, 24, 235701.	2.6	9
220	Quantifying energetics of topological frustration in carbon nanostructures. Physical Review B, 2014, 89, .	3.2	9
221	Emergent magnetism in irradiated graphene nanostructures. Carbon, 2014, 78, 196-203.	10.3	9
222	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. Angewandte Chemie, 2016, 128, 10035-10039.	2.0	9
223	Low-frequency Raman signature of Ag-intercalated few-layer MoS ₂ . 2D Materials, 2021, 8, 025031.	4.4	9
224	Scanning frequency mixing microscopy of high-frequency transport behavior at electroactive interfaces. Applied Physics Letters, 2006, 88, 143128.	3.3	8
225	Benzo-homologated nucleobases in a nanotube-electrode set-up for DNA sequencing. Nanotechnology, 2007, 18, 424019.	2.6	8
226	Nanoclusters of TiO2 wetted with gold. Surface Science, 2009, 603, 3131-3135.	1.9	8
227	Asymmetric electron transport and highest occupied molecular orbital assisted tunneling through Zn-porphyrin molecular junctions. Applied Physics Letters, 2013, 103, .	3.3	8
228	Electrolyte Diffusion in Gyroidal Nanoporous Carbon. Journal of Physical Chemistry C, 2015, 119, 2896-2903.	3.1	8
229	Investigating Orientational Defects in Energetic Material RDX Using First-Principles Calculations. Journal of Physical Chemistry A, 2016, 120, 1917-1924.	2.5	8
230	Pressure Tuning of Bromine Ionic States in Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 10609-10619.	3.1	8
231	High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device. Journal of Magnetism and Magnetic Materials, 2018, 451, 532-539.	2.3	8
232	Investigation of the nanoscale self-assembly of donor-σ-acceptor molecules. International Journal of Quantum Chemistry, 2007, 107, 2233-2242.	2.0	7
233	Theory of zwitterionic molecular-based organic magnets. Chemical Physics Letters, 2011, 511, 294-298.	2.6	7
234	Role of Antiferromagnetic Ordering in the (1×2) Surface Reconstruction ofCa(Fe1â^'xCox)2As2. Physical Review Letters, 2014, 112, 077205.	7.8	7

#	Article	IF	CITATIONS
235	Predicting hidden bulk phases from surface phases in bilayered Sr3Ru2O7. Scientific Reports, 2017, 7, 10265.	3.3	7
236	First-principles study of the thermodynamic and vibrational properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ReS</mml:mi><mml:mn>2under pressure. Physical Review B, 2019, 100, .</mml:mn></mml:msub></mml:math 	nl:mr8.2/mn	nl:msub>
237	Partial charge transfer and absence of induced magnetization in EuS(111)/Bi2Se3 heterostructures. Physical Review B, 2021, 104, .	3.2	7
238	Electronic properties of 2D and 1D carbon allotropes based on a triphenylene structural unit. Physical Chemistry Chemical Physics, 2021, 23, 25114-25125.	2.8	7
239	Elastic deformation of a carbon nanotube adsorbed on a stepped surface. Carbon, 1998, 36, 701-704.	10.3	6
240	Influence of structural defects on Fresnel projection microscope images of carbon nanotubes: Implications for the characterization of nanoscale devices. Physical Review B, 2000, 61, R13385-R13388.	3.2	6
241	Electronic transport properties of carbon nanotoroids. Nanotechnology, 2011, 22, 075701.	2.6	6
242	Dynamical properties of carbon nanotube welding into <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>X</mml:mi>junctions. Physical Review B, 2013, 88, .</mml:math 	3.2	6
243	Up and down translocation events and electric double-layer formation inside solid-state nanopores. Physical Review E, 2015, 92, 022715.	2.1	6
244	Phonon-Enabled Carrier Transport of Localized States at Non-Polar Semiconductor Surfaces: A First-Principles-Based Prediction. Journal of Physical Chemistry Letters, 2016, 7, 3548-3553.	4.6	6
245	Theoretical analysis of spectral lineshapes from molecular dynamics. Npj Computational Materials, 2019, 5, .	8.7	6
246	Carbon nanotube knots. AIP Advances, 2019, 9, 025030.	1.3	6
247	Electronic properties of N-rich graphene nano-chevrons. Physical Chemistry Chemical Physics, 2021, 23, 13204-13215.	2.8	6
248	Electronic transmission selectivity in multiterminal graphitic nanorings. Applied Physics Letters, 2011, 98, 112111.	3.3	5
249	Defect-Driven Restructuring of TiO2 Surface and Modified Reactivity Toward Deposited Gold Atoms. Catalysts, 2013, 3, 276-287.	3.5	5
250	Quantum oscillation in carrier transport in two-dimensional junctions. Nanoscale, 2018, 10, 7912-7917.	5.6	5
251	Effect of substitutional impurities on vibrational properties of zircon: a first-principles study. Journal of Physics Condensed Matter, 2019, 31, 455402.	1.8	5
252	Shell model extension to the valence force field: application to single-layer black phosphorus. Physical Chemistry Chemical Physics, 2019, 21, 322-328.	2.8	5

#	Article	IF	CITATIONS
253	Quantum theory of electronic excitation and sputtering by transmission electron microscopy. Nanoscale, 2023, 15, 1053-1067.	5.6	5
254	Density functional theory studies of quantum transport in molecular systems. International Journal of Quantum Chemistry, 2006, 106, 3334-3342.	2.0	4
255	Atomic scale design of nanostructures. Molecular Physics, 2007, 105, 147-156.	1.7	4
256	Tuning the conductance of carbon nanotubes with encapsulated molecules. Nanotechnology, 2007, 18, 424032.	2.6	4
257	Electron transport in open systems from finite-size calculations: Examination of the principal layer method applied to linear gold chains. Journal of Chemical Physics, 2008, 128, 154713.	3.0	4
258	Electronic properties of three-terminal graphitic nanowiggles. Physical Review B, 2014, 90, .	3.2	4
259	Temperature-Dependent and Bistable Current–Voltage Measurements in Zinc Porphyrin Molecular Junctions. ACS Applied Materials & Interfaces, 2015, 7, 10085-10090.	8.0	4
260	Interpretation of the STM Images of Carbon Nanotubes. , 2001, , 233-244.		4
261	Naphthylene- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>γ </mml:mi> : 1D and 2D carbon allotropes based on the fusion of phenyl- and naphthyl-like groups. Physical Review Materials, 2020. 4</mml:math 	2.4	4
262	Exact and many-body perturbation solutions of the Hubbard model applied to linear chains. AIP Advances, 2022, 12, .	1.3	4
263	Response to "Comment on †Intrinsic electron transport properties of carbon nanotube Y junctions' â [Appl. Phys. Lett. 83, 1674 (2003)]. Applied Physics Letters, 2003, 83, 1676-1677.	€. 3.3	3
264	Regularly Curved Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 523-533.	2.1	3
265	Electronic transport of silicon nanowires with surface defects. International Journal of Quantum Chemistry, 2009, 109, 3705-3710.	2.0	3
266	Modern Theories of Carbon-Based Electrochemical Capacitors: A Short Review. , 2010, , .		3
267	Advancing Understanding and Design of Functional Materials Through Theoretical and Computational Chemical Physics. , 2012, , 209-278.		3
268	Electronic and transport properties of graphene nanoribbon barbellâ€shaped heterojunctions. Physica Status Solidi (B): Basic Research, 2013, 250, 2417-2423.	1.5	3
269	Electronic transport in three-terminal triangular carbon nanopatches. Nanotechnology, 2014, 25, 045706.	2.6	3
270	Electronic, transport, and magnetic properties of punctured carbon nanotubes. Physical Review B, 2016, 94, .	3.2	3

#	Article	IF	CITATIONS
271	Modeling the Kondo effect of a magnetic atom adsorbed on graphene. 2D Materials, 2019, 6, 035038.	4.4	3
272	Semi-empirical many-body formalism of optical absorption in nanosystems and molecules. Carbon Trends, 2021, 4, 100073.	3.0	3
273	Electron transport in molecular systems. Journal of Physics: Conference Series, 2005, 16, 283-286.	0.4	2
274	Effect of phaseâ€breaking events on electron transport in mesoscopic and nanodevices. International Journal of Quantum Chemistry, 2008, 108, 2896-2905.	2.0	2
275	Evidence of Coulomb blockade behavior in a quasi-zero-dimensional quantum well on TiO ₂ surface. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14968-14972.	7.1	2
276	Electrospinning. , 2012, , 769-775.		2
277	Revealing out-of-equilibrium hidden phases in Sr3Ru2O7 by applying stress. Physical Review B, 2018, 97, .	3.2	2
278	Spin dependent transport in hybrid one dimensional BNC systems. Semiconductor Science and Technology, 2019, 34, 015004.	2.0	2
279	Electronic and magnetic properties of tripentaphene nanoribbons. Physical Review Materials, 2022, 6, .	2.4	2
280	Electronic properties of nanotube junctions. , 1998, , .		1
281	Large-scale simulations of advanced materials and nanoscale devices. , 0, , .		1
282	Surface Defect-mediated Reactivity of Au/TiO2(110). Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	1
283	Computational modeling of carbon nanostructures for energy storage applications. , 2010, , .		1
284	Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons. Applied Sciences (Switzerland), 2014, 4, 351-365.	2.5	1
285	Voltage-Dependent Barrier Height of Electron Transport through Iron Porphyrin Molecular Junctions. Journal of Physical Chemistry C, 2021, 125, 7350-7357.	3.1	1
286	Structural and electronic properties of double-walled α-graphyne nanotubes. Computational Materials Science, 2021, 200, 110768.	3.0	1
287	Electronic properties of boron-rich graphene nanowiggles. Computational Materials Science, 2022, 201, 110907.	3.0	1
288	ELECTRONIC TRANSPORT IN NANOTUBES AND THROUGH JUNCTIONS OF NANOTUBES. , 2006, , 123-142.		1

#	Article	IF	CITATIONS
289	Electronic processes in scanning tunneling microscopy of carbon nanotubes. , 1998, , .		0
290	Scanning tunneling microscopy of carbon nanotubes: simulation and interpretation. , 1999, , .		0
291	Li Uptake in Carbon Nanotube Systems: A First Principles Investigation. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	0
292	Field Emission Properties of BN/C and BN@C Hybrid Nanotubes. Materials Research Society Symposia Proceedings, 2002, 739, 571.	0.1	0
293	Simulation of STM Images and STS Spectra of Carbon Nanotubes. , 2002, , 17-33.		0
294	Large-Scale Quantum-Mechanical Simulations of Nanoscale Devices and New Materials. , 2004, , .		0
295	Theory of Scanning Probe Microscopy of Carbon Nanostructures. Materials Research Society Symposia Proceedings, 2004, 838, 79.	0.1	0
296	Optimizing the Electronic Properties of Carbon Nanotubes using Amphoteric Doping. , 0, , 29-46.		0
297	On the Design of Low Dimensional Devices Using Atomistic Computational Approaches. , 2008, , .		0
298	Properties of High-Performance Capacitor Materials and Nanoscale Electronic Devices. , 2010, , .		0
299	Electrostatic RF MEMS Switches. , 2012, , 783-783.		0
300	Electrowetting-on-Dielectric (EWOD). , 2012, , 789-789.		0
301	Nanoribbons: Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv.) Tj ETQo	1 1 0.784 14.9	3]4 rgBT /O
302	Nanodrilling: Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages (Part. Part. Syst. Charact. 1/2013). Particle and Particle Systems Characterization, 2013, 30, 75-75.	2.3	0
303	(Invited) Microscopic Studies of Black Phosphorus and Its Field-Effect Transistors. ECS Transactions, 2015, 69, 93-104.	0.5	0
304	Polarization in Nanotubes and Nanotubular Structures. , 2005, , .		0
305	Modeling and Simulation of Electron Transport at the Nanoscale: Illustrations in Low-Dimensional Carbon Nanostructures. Advances in Atom and Single Molecule Machines, 2013, , 123-133.	0.0	0

Electronic Transport in Carbon Nanomaterials. , 2016, , 1084-1101.

#	Article	IF	CITATIONS
307	Theory of Scanning Probe Microscopy. , 2007, , 455-479.		0
308	Nearly free phonons in a weak soliton potential and the case of twisted bilayer graphene. Physical Review B, 2022, 105, .	3.2	0
309	Electronic and vibrational properties of bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Cr</mml:mi> <mml:m from first-principles calculations. Physical Review B, 2022, 105, .</mml:m </mml:msub></mml:mrow></mml:math 	n 82 2 /mml	l:non>
310	Electronic properties of carbon sheets and nanoribbons based on acepentalene-like building blocks. Computational Materials Science, 2022, 211, 111520.	3.0	0