
Benny Endelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5752086/publications.pdf Version: 2024-02-01

RENNY ENDELT

#	Article	IF	CITATIONS
1	Characterization of mechanical properties for tubular materials based on hydraulic bulge test under axial feeding force. Fundamental Research, 2023, 3, 592-601.	3.3	0
2	In-process feedback control of tube hydro-forming process. International Journal of Advanced Manufacturing Technology, 2022, 119, 7723.	3.0	1
3	Identification of constitutive parameters for thin-walled aluminium tubes using a hybrid strategy. Materials Today Communications, 2021, 28, 102670.	1.9	2
4	Temperature Gradients at the Solidification Front of Deep Hybrid Laser Welds. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2.2	0
5	Online measurement of the surface during laser forming. International Journal of Advanced Manufacturing Technology, 2020, 107, 1569-1579.	3.0	8
6	Quality Inspection System for Robotic Laser Welding of Double-Curved Geometries. Procedia Manufacturing, 2019, 36, 50-57.	1.9	2
7	Investigation of the Profile of Laser Bends with Variable Scan Distance. Procedia Manufacturing, 2019, 36, 192-199.	1.9	1
8	Feedback control of laser forming using flattening simulations for error determination. IOP Conference Series: Materials Science and Engineering, 2019, 651, 012093.	0.6	0
9	A numerical model for full and partial penetration hybrid laser welding of thick-section steels. Optics and Laser Technology, 2019, 111, 671-686.	4.6	45
10	Coupling method for internal nozzle flow and the spray formation for viscous liquids. International Journal of Computational Methods and Experimental Measurements, 2019, 7, 130-141.	0.2	2
11	Investigation into bulging-pressing compound forming for sheet metal parts with very small radii. International Journal of Advanced Manufacturing Technology, 2018, 95, 445-457.	3.0	3
12	Influence of cooling on edge effects in laser forming. Procedia CIRP, 2018, 74, 394-397.	1.9	4
13	Design strategy for optimal iterative learning control applied on a deep drawing process. International Journal of Advanced Manufacturing Technology, 2017, 88, 3-18.	3.0	9
14	Rheological behaviour of lubrication oils used in two-stroke marine engines. Industrial Lubrication and Tribology, 2017, 69, 750-753.	1.3	0
15	A New Method for Calculating the Error Term Used in 2D Feedback Control of Laser Forming. Physics Procedia, 2017, 89, 148-155.	1.2	4
16	Proposing a new iterative learning control algorithm based on a non-linear least square formulation - Minimising draw-in errors. Journal of Physics: Conference Series, 2017, 896, 012036.	0.4	0
17	A MODEL FOR CAVITATION-INDUCED PRIMARY BREAK-UP OF VISCOUS LIQUID SPRAYS. WIT Transactions on Engineering Sciences, 2017, , .	0.0	3
18	Applied State Space Feedback Control of a Deep Drawing Process. Key Engineering Materials, 2014, 611-612, 1023-1030.	0.4	0

Benny Endelt

#	Article	IF	CITATIONS
19	A novel feedback control system – Controlling the material flow in deep drawing using distributed blank-holder force. Journal of Materials Processing Technology, 2013, 213, 36-50.	6.3	45
20	Designing a feedback control algorithm for the tube hydroforming process. , 2013, , .		0
21	Statistical investigation of a blank holder force distribution system for a multi-step deep drawing process. , 2013, , .		Ο
22	Experimental verification of a deep drawing tool system for adaptive blank holder pressure distribution. Journal of Materials Processing Technology, 2012, 212, 2529-2540.	6.3	37
23	Intelligent Shimming for Deep Drawing Processes. , 2011, , .		0
24	Iterative Learning and Feedback Control Applied on a Deep Drawing Process. International Journal of Material Forming, 2010, 3, 25-28.	2.0	9
25	Identification of friction coefficients and hardening parameters using optimization methods coupled with a 3D finite element code. Journal of Materials Processing Technology, 2009, 209, 4005-4010.	6.3	7
26	Feedback control of a forming process and the impact of normal distributed sampling noise. International Journal of Material Forming, 2009, 2, 339-342.	2.0	4
27	Improving the quality of deep drawn parts using variable blank holder force. International Journal of Material Forming, 2009, 2, 809-812.	2.0	5
28	Calcium phosphate cement enhances primary stability of open-wedge high-tibial osteotomies. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 1425-1432.	4.2	9
29	Multi Stage Strategies for Single Point Incremental Forming of a Cup. International Journal of Material Forming, 2008, 1, 1199-1202.	2.0	80
30	New framework for on-line feedback control of a deep-drawing operation. Journal of Materials Processing Technology, 2006, 177, 426-429.	6.3	13
31	Advanced Gradient Based Optimization Techniques Applied on Sheet Metal Forming. AIP Conference Proceedings, 2005, , .	0.4	Ο
32	Analytic Differentiation of Barlat's 2D Criteria for Inverse Modeling. AIP Conference Proceedings, 2005, , .	0.4	0
33	Numerical Comparison of Three Different Feedback Control Schemes Applied on a Forming Operation. Applied Mechanics and Materials, 0, 885, 64-74.	0.2	0