M Atilla Tasdelen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5751891/publications.pdf Version: 2024-02-01

122	7,440 citations	57631 44 h-index	54797 84 g-index
papers	citations	n-muex	g-muex
133 all docs	133 docs citations	133 times ranked	5421 citing authors

#	Article	IF	CITATIONS
1	Photomediated controlled radical polymerization. Progress in Polymer Science, 2016, 62, 73-125.	11.8	537
2	Diels–Alder "click―reactions: recent applications in polymer and material science. Polymer Chemistry, 2011, 2, 2133.	1.9	488
3	Lightâ€Induced Click Reactions. Angewandte Chemie - International Edition, 2013, 52, 5930-5938.	7.2	394
4	Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 2011, 36, 455-567.	11.8	361
5	Mechanistic transformations involving living and controlled/living polymerization methods. Progress in Polymer Science, 2006, 31, 1133-1170.	11.8	324
6	Anthraceneâ^'Maleimide-Based Dielsâ ''Alder "Click Chemistry―as a Novel Route to Graft Copolymers. Macromolecules, 2006, 39, 5330-5336.	2.2	271
7	Photoinduced Controlled Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 58-62.	2.0	237
8	Influence of Type of Initiation on Thiol–Ene "Click―Chemistry. Macromolecular Chemistry and Physics, 2010, 211, 103-110.	1.1	218
9	Photoinduced Controlled Radical Polymerization in Methanol. Macromolecular Chemistry and Physics, 2010, 211, 2271-2275.	1.1	168
10	Visible Lightâ€Induced Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2012, 213, 1391-1396.	1.1	153
11	Sunlight induced atom transfer radical polymerization by using dimanganese decacarbonyl. Polymer Chemistry, 2014, 5, 600-606.	1.9	152
12	Photoinduced Free Radical Promoted Copper(I)-Catalyzed Click Chemistry for Macromolecular Syntheses. Macromolecules, 2012, 45, 56-61.	2.2	149
13	Photoinitiated atom transfer radical polymerization: Current status and future perspectives. Journal of Polymer Science Part A, 2014, 52, 2878-2888.	2.5	148
14	Light-induced copper(I)-catalyzed click chemistry. Tetrahedron Letters, 2010, 51, 6945-6947.	0.7	143
15	Studies on Photoinduced ATRP in the Presence of Photoinitiator. Macromolecular Chemistry and Physics, 2011, 212, 2036-2042.	1.1	133
16	Photoinduced Atom Transfer Radical Polymerization Using Semiconductor Nanoparticles. Macromolecular Rapid Communications, 2014, 35, 454-459.	2.0	120
17	Recent advances in the preparation of functionalized polysulfones. Polymer International, 2013, 62, 991-1007.	1.6	112
18	Photoinitiated ATRP in Inverse Microemulsion. Macromolecules, 2013, 46, 9537-9543.	2.2	112

#	Article	IF	CITATIONS
19	Photochemically Mediated Atom Transfer Radical Polymerization Using Polymeric Semiconductor Mesoporous Graphitic Carbon Nitride. Macromolecular Chemistry and Physics, 2014, 215, 675-681.	1.1	111
20	Polytetrahydrofuran/Clay Nanocomposites by In Situ Polymerization and "Click―Chemistry Processes. Macromolecules, 2008, 41, 6035-6040.	2.2	105
21	Externally stimulated click reactions for macromolecular syntheses. Progress in Polymer Science, 2016, 52, 19-78.	11.8	103
22	Synthesis and characterization of polymer/clay nanocomposites by intercalated chain transfer agent. European Polymer Journal, 2008, 44, 1949-1954.	2.6	102
23	A new photoiniferter/RAFT agent for ambient temperature rapid and wellâ€controlled radical polymerization. Journal of Polymer Science Part A, 2008, 46, 3387-3395.	2.5	89
24	Clay-PMMA Nanocomposites by Photoinitiated Radical Polymerization Using Intercalated Phenacyl Pyridinium Salt Initiators. Macromolecular Chemistry and Physics, 2006, 207, 820-826.	1.1	86
25	Photoinitiated Free Radical Polymerization Using Benzoxazines as Hydrogen Donors. Macromolecular Rapid Communications, 2006, 27, 1539-1544.	2.0	85
26	Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer, 2009, 50, 3905-3910.	1.8	84
27	The emerging applications of click chemistry reactions in the modification of industrial polymers. Polymer Chemistry, 2019, 10, 3806-3821.	1.9	80
28	Photoacid Generation by Stepwise Two-Photon Absorption:  Photoinitiated Cationic Polymerization of Cyclohexene Oxide by Using Benzodioxinone in the Presence of Iodonium Salt. Macromolecules, 2008, 41, 295-297.	2.2	79
29	Photoinduced free radical promoted cationic polymerization 40 years after its discovery. Polymer Chemistry, 2020, 11, 1111-1121.	1.9	79
30	Reduction of Cu(II) by photochemically generated phosphonyl radicals to generate Cu(I) as catalyst for atom transfer radical polymerization and azide-alkyne cycloaddition click reactions. Polymer, 2014, 55, 3468-3474.	1.8	68
31	In situ Synthesis of Polymer/Clay Nanocomposites by Living and Controlled/Living Polymerization. Macromolecular Chemistry and Physics, 2010, 211, 279-285.	1.1	67
32	Photoinduced reverse atom transfer radical polymerization of methyl methacrylate using camphorquinone/benzhydrol system. Polymer International, 2014, 63, 902-907.	1.6	67
33	Synthesis and characterization of graft copolymers by photoinduced CuAAC click chemistry. European Polymer Journal, 2015, 66, 282-289.	2.6	59
34	Poly(cyclohexene oxide)/clay nanocomposites by photoinitiated cationic polymerization via activated monomer mechanism. Journal of Polymer Science Part A, 2009, 47, 5328-5335.	2.5	54
35	Synthesis of polybenzoxazine/clay nanocomposites by <i>in situ</i> thermal ringâ€opening polymerization using intercalated monomer. Journal of Polymer Science Part A, 2011, 49, 4213-4220.	2.5	53
36	Poly(epsilon-caprolactone)/clay nanocomposites via "click―chemistry. European Polymer Journal, 2011, 47, 937-941.	2.6	53

#	Article	IF	CITATIONS
37	Synthesis and properties of soybean oil-based biodegradable polyurethane films. Progress in Organic Coatings, 2018, 123, 261-266.	1.9	53
38	Poly(styreneâ€ <i>b</i> â€ŧetrahydrofuran)/clay nanocomposites by mechanistic transformation. Journal of Polymer Science Part A, 2009, 47, 2190-2197.	2.5	52
39	Photochemical Methods for the Preparation of Complex Linear and Cross-linked Macromolecular Structures. Australian Journal of Chemistry, 2011, 64, 982.	0.5	52
40	The use of poly(ethylene oxide) as hydrogen donor in type II photoinitiated free radical polymerization. Polymer Bulletin, 2009, 63, 173-183.	1.7	49
41	Photochemically initiated free radical promoted living cationic polymerization of isobutyl vinyl ether. Polymer, 2007, 48, 2199-2202.	1.8	48
42	Photochemically masked benzophenone: Photoinitiated free radical polymerization by using benzodioxinone. Polymer, 2006, 47, 7611-7614.	1.8	47
43	Photoinduced Cross-Linking Polymerization of Monofunctional Vinyl Monomer without Conventional Photoinitiator and Cross-Linker. Macromolecules, 2007, 40, 4406-4408.	2.2	44
44	Poly(propylene imine) dendrimers as hydrogen donor in Type II photoinitiated free radical polymerization. European Polymer Journal, 2007, 43, 4423-4430.	2.6	43
45	Macromolecular design and application using Mn ₂ (<scp>CO</scp>) ₁₀ â€based visible light photoinitiating systems. Polymer International, 2016, 65, 1001-1014.	1.6	43
46	<i>In situ</i> synthesis of polymer/clay nanocomposites by type II photoinitiated free radical polymerization. Journal of Polymer Science Part A, 2011, 49, 3658-3663.	2.5	42
47	Star polymers by photoinduced copper-catalyzed azide-alkyne cycloaddition click chemistry. Journal of Polymer Science Part A, 2015, 53, 1687-1695.	2.5	39
48	Polymer Nanocomposites via Click Chemistry Reactions. Polymers, 2017, 9, 499.	2.0	39
49	In Situ Synthesis of Oil-Based Polymer/Silver Nanocomposites by Photoinduced Electron Transfer and Free Radical Polymerization Processes. Composite Interfaces, 2010, 17, 357-369.	1.3	37
50	Photoinitiated Cationic Polymerization of Vinyl Ethers Using Substituted Vinyl Halides. Macromolecules, 2009, 42, 4443-4448.	2.2	36
51	Polysulfone/Clay Nanocomposites by in situ Photoinduced Crosslinking Polymerization. Macromolecular Materials and Engineering, 2011, 296, 1101-1106.	1.7	35
52	Photoinitiated Cationic Polymerization of Mono and Divinyl Ethers in Aqueous Medium Using Ytterbium Triflate as Lewis Acid. Macromolecular Chemistry and Physics, 2008, 209, 1881-1886.	1.1	34
53	Synthesis of Miktoarm Star‧haped Polymers with POSS Core via a Combination of CuAAC Click Chemistry, ATRP, and ROP Techniques. Macromolecular Chemistry and Physics, 2015, 216, 1823-1830.	1.1	33
54	In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline)-based amphiphilic block copolymers prepared by CuAAC click chemistry. EXPRESS Polymer Letters, 2018, 12, 146-158.	1.1	32

#	Article	IF	CITATIONS
55	Synthesis and characterization of polypropyleneâ€ <i>graft</i> â€poly(<scp>l</scp> ″actide) copolymers by CuAAC click chemistry. Journal of Polymer Science Part A, 2018, 56, 2595-2601.	2.5	32
56	Click Chemistry in Macromolecular Design: Complex Architectures from Functional Polymers. Chemistry Africa, 2019, 2, 195-214.	1.2	32
57	In-situ preparation of poly(2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. European Polymer Journal, 2017, 88, 586-593.	2.6	30
58	Photoâ€Induced Crossâ€Linking of Divinyl Ethers by Using Diphenyliodonium Salts With Highly Nucleophilic Counter Anions in the Presence of Zinc Halides. Macromolecular Rapid Communications, 2008, 29, 202-206.	2.0	29
59	Folic acid modified clay/polymer nanocomposites for selective cell adhesion. Journal of Materials Chemistry B, 2014, 2, 6412-6421.	2.9	29
60	POSS-based hybrid thermosets via photoinduced copper-catalyzed azide–alkyne cycloaddition click chemistry. Designed Monomers and Polymers, 2016, 19, 155-160.	0.7	29
61	Soybean oil based thermoset networks via photoinduced <scp>CuAAC</scp> click chemistry. Polymer International, 2017, 66, 999-1004.	1.6	29
62	Synthesis of block copolymers by selective H-abstraction and radical coupling reactions using benzophenone/benzhydrol photoinitiating system. European Polymer Journal, 2015, 62, 304-311.	2.6	28
63	Photoinitiated curing of mono―and bifunctional epoxides by combination of active chain end and activated monomer cationic polymerization methods. Journal of Polymer Science Part A, 2007, 45, 4914-4920.	2.5	27
64	Phenacylpyridinium Oxalate as a Novel Water-Soluble Photoinitiator for Free Radical Polymerization. Polymer Bulletin, 2008, 59, 759-766.	1.7	27
65	Possibilities for Photoinduced Controlled Radical Polymerizations. ACS Symposium Series, 2012, , 59-72.	0.5	26
66	Synthesis and Characterization of Polysulfone/ <scp>POSS</scp> Hybrid Networks by Photoinduced Crosslinking Polymerization. Macromolecular Materials and Engineering, 2013, 298, 1117-1123.	1.7	25
67	Synthesis and Characterization of Block-Graft Copolymers [poly(epichlorohydrin-b-styrene)-g-poly(methyl methacrylate)] by Combination of Activated Monomer Polymerization, NMP and ATRP. Polymer Bulletin, 2007, 58, 653-663.	1.7	24
68	Preparation of fluorinated methacrylate/clay nanocomposite via <i>inâ€situ</i> polymerization: Characterization, structure, and properties. Journal of Polymer Science Part A, 2017, 55, 411-418.	2.5	24
69	Polypropylene-based graft copolymers via CuAAC click chemistry. EXPRESS Polymer Letters, 2018, 12, 418-428.	1.1	24
70	Polymer/clay nanocomposites through multiple hydrogenâ€bonding interactions. Journal of Polymer Science Part A, 2015, 53, 650-658.	2.5	23
71	Antibacterial film from chlorinated polypropylene via CuAAC click chemistry. Progress in Organic Coatings, 2018, 125, 73-78.	1.9	22
72	Design and Synthesis of Thermally Curable Polymers with Benzoxazine Functionalities. Macromolecular Symposia, 2006, 245-246, 27-33.	0.4	21

#	Article	IF	CITATIONS
73	In situsynthesis of A3-type star polymer/clay nanocomposites by atom transfer radical polymerization. Journal of Polymer Science Part A, 2013, 51, 5257-5262.	2.5	19
74	Graft copolymers from commercial chlorinated polypropylene via Cu(0)â€mediated atom transfer radical polymerization. Polymer International, 2016, 65, 1458-1463.	1.6	19
75	Orthogonal Synthesis of Block Copolymer via Photoinduced CuAAC and Ketene Chemistries. Macromolecular Rapid Communications, 2016, 37, 521-526.	2.0	19
76	Synthesis of fluorinated polypropylene using CuAAC click chemistry. Journal of Applied Polymer Science, 2019, 136, 47072.	1.3	19
77	Poly(methyl methacrylate)/POSS hybrid networks by type II photoinitiated free radical polymerization. Polymer Composites, 2014, 35, 1614-1620.	2.3	18
78	Synthesis, characterization and surface properties of star-shaped polymeric surfactants with polyhedral oligomeric silsesquioxane core. Polymer International, 2017, 66, 1610-1616.	1.6	18
79	Poly(epsilon caprolactone)/clay nanocomposites via host–guest chemistry. European Polymer Journal, 2015, 71, 259-267.	2.6	17
80	Bile acid bearing poly (vinyl chloride) nanofibers by combination of CuAAC click chemistry and electrospinning process. Materials Today Communications, 2020, 25, 101425.	0.9	17
81	Polystyrene/clay nanocomposites by atom transfer radical nitroxide coupling chemistry. Journal of Polymer Science Part A, 2013, 51, 1024-1028.	2.5	16
82	Aliphatic Polyester/polyhedral Oligomeric Silsesquioxanes Hybrid Networks via Copperâ€free 1,3â€dipolar Cycloaddition Click Reaction. Journal of Polymer Science Part A, 2019, 57, 2222-2227.	2.5	16
83	Benzodioxinone Photochemistry in Macromolecular Science: Progress, Challenges, and Opportunities. ACS Macro Letters, 2017, 6, 1392-1397.	2.3	15
84	Synthesis of self-curable polysulfone containing pendant benzoxazine units via CuAAC click chemistry. Designed Monomers and Polymers, 2017, 20, 293-299.	0.7	14
85	Measurement of photon interaction parameters of high-performance polymers and their composites. Radiation Effects and Defects in Solids, 2018, 173, 474-488.	0.4	14
86	Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry. Iranian Polymer Journal (English Edition), 2017, 26, 405-411.	1.3	13
87	Hybrid film properties of the linseed oil based alkyd resin modified with glycidyl polyhedral oligomeric silsesquioxane. Progress in Organic Coatings, 2018, 124, 175-184.	1.9	13
88	New Photoinitiating Systems for Cationic Polymerization Acting at Near UV and Visible Range. Macromolecular Symposia, 2011, 308, 25-34.	0.4	12
89	Photoinduced Cu(0)â€Mediated Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 812-817.	1.1	11
90	Synthesis and characterization of sugar-based methacrylates and their random copolymers by ATRP. EXPRESS Polymer Letters, 2017, 11, 799-808.	1.1	11

#	Article	IF	CITATIONS
91	Starâ€shaped hybrid polymers as insulators for organic field effect transistors. Polymers for Advanced Technologies, 2018, 29, 3020-3026.	1.6	11
92	Effect of clay on the dielectric properties of novel fluorinated methacrylate nanocomposites. Polymer Composites, 2019, 40, 3333-3341.	2.3	11
93	Synthesis, biocompatibility and gene encapsulation of poly(2-Ethyl 2-Oxazoline)-dioleoyl phosphatidylethanolamine (PEtOx-DOPE) and post-modifications with peptides and fluorescent dye coumarin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 981-993.	1.8	10
94	Influence of POSS nanoparticles on the microstructure and mechanical properties of carbon fiber reinforced epoxy hybrid composites. Polymer Composites, 2021, 42, 4056-4064.	2.3	10
95	Controlled/Living Radical Polymerization in the Presence of Iniferters. RSC Polymer Chemistry Series, 2013, , 78-111.	0.1	9
96	Nonâ€covalent interactions of pyrene endâ€labeled star poly(É›â€caprolactone)s with fullerene. Journal of Applied Polymer Science, 2018, 135, 46520.	1.3	9
97	Cysteamine-functionalized silver nanowires as hydrogen donor for type II photopolymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 479-484.	2.0	8
98	In situ preparation of thermoset/clay nanocomposites via thiol-epoxy click chemistry. Polymer Bulletin, 2018, 75, 4901-4911.	1.7	8
99	Exploiting ionisable nature of PEtOx- <i>co</i> -PEI to prepare pH sensitive, doxorubicin-loaded micelles. Journal of Microencapsulation, 2020, 37, 467-480.	1.2	8
100	Light Induced Processes for the Synthesis of Polymers With Complex Structures. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 329-341.	0.5	7
101	Thermally Curable Polyoxanorbornene by Ring Opening Metathesis Polymerization. Macromolecular Chemistry and Physics, 2011, 212, 2121-2126.	1.1	7
102	Visible Light-Induced Atom Transfer Radical Polymerization for Macromolecular Syntheses. ACS Symposium Series, 2015, , 145-158.	0.5	7
103	Poly(<i>p</i> â€phenylene methylene)â€based block copolymers by mechanistic transformation. Journal of Polymer Science Part A, 2011, 49, 4021-4026.	2.5	6
104	Simultaneous photoinduced electron transfer and photoinduced CuAAC processes for antibacterial thermosets. Progress in Organic Coatings, 2017, 105, 252-257.	1.9	6
105	Facile UV-induced covalent modification and crosslinking of styrene–isoprene–styrene copolymer <i>via</i> Paterno–Büchi [2 + 2] photocycloaddition. RSC Advances, 2021, 11, 8585-8593.	1.7	6
106	Synthesis and characterization of bile <scp>acidâ€based</scp> polymeric micelle as a drug carrier for doxorubicin. Polymers for Advanced Technologies, 2021, 32, 4860-4868.	1.6	6
107	Synthesis of Poly(isobutyl vinyl ether)-graft-Poly(ethylene oxide) Co-polymer with Pendant Methacrylate Functionality and Its Photo-curing Behavior. Designed Monomers and Polymers, 2009, 12, 265-272.	0.7	5
108	In situ preparation of hetero-polymers/clay nanocomposites by CUAAC click chemistry. Turkish Journal of Chemistry, 2021, 45, 50-59.	0.5	5

M Atilla Tasdelen

#	Article	IF	CITATIONS
109	A numerical and experimental investigation on quasi-static punch shear test behavior of aramid/epoxy composites. Polymers and Polymer Composites, 2020, 28, 398-409.	1.0	4
110	Development of self-assembled poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone) (PEtOx-b-PCL) copolymeric nanostructures in aqueous solution and evaluation of their morphological transitions. EXPRESS Polymer Letters, 2020, 14, 1048-1062.	1.1	4
111	Visible lightâ€induced synthesis of polysulfoneâ€based graft copolymers by a grafting from approach. Journal of Polymer Science, 2020, 58, 412-416.	2.0	4
112	The synthesis of peptideâ€conjugated poly(2â€ethylâ€2â€oxazoline)â€ <i>b</i> â€poly(Lâ€lactide) (<scp>PEtOxâ€<i>b</i>â€PLA</scp>) polymeric systems through the combination of controlled polymerization techniques and click reactions. Journal of Applied Polymer Science, 2021, 138, 50286.	1.3	4
113	In-situ preparation of halloysite nanotube-epoxy thermoset nanocomposites via light-induced cationic polymerization. European Polymer Journal, 2021, 158, 110682.	2.6	4
114	The Utilization of Poly(2â€ethylâ€2â€oxazoline)â€ <i>b</i> â€Poly(εâ€caprolactone) Ellipsoidal Particles for Intracellular BIKDDA Delivery to Prostate Cancer. Macromolecular Bioscience, 2021, 21, e2000287.	2.1	3
115	Synthesis, characterization and surfactant properties of cholic acid containing linear and star polymers. Journal of Polymer Research, 2021, 28, 1.	1.2	3
116	Poly(ε aprolactone)/montmorillonite nanocomposites via <scp>Diels</scp> – <scp>Alder</scp> click reaction. Polymer Composites, 2022, 43, 1168-1176.	2.3	3
117	Oneâ€pot photoinduced synthesis of dansyl containing acrylamide hydrogels and their chemosensing properties. Journal of Applied Polymer Science, 2019, 136, 47096.	1.3	2
118	Halloysite Containing Thermoset Nanocomposites via Free Radical Photocrosslinking Polymerization. Macromolecular Chemistry and Physics, 2020, 221, 2000197.	1.1	2
119	Methacrylate-functionalized POSS influence on cross-linking and mechanical properties of styrene-butadiene rubber. Iranian Polymer Journal (English Edition), 2021, 30, 697-705.	1.3	2
120	Light-Induced Reactions of Benzoxazines and Derivatives. , 2011, , 183-191.		1
121	Block and Graft Copolymers. Plastics Engineering, 2008, , 307-345.	0.1	1

122 POSS-based hybrid nanocomposites. , 2021, , 205-216.

0