
Xiao-Feng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5751787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Electrospun Xylan-g-PMMA/TiO2 Nanofibers and Photocatalytic Degradation of Methylene Blue. Polymers, 2022, 14, 2489.	2.0	5
2	Chemically-Crosslinked Xylan/Graphene Oxide Composite Hydrogel for Copper Ions Removal. Journal of Polymers and the Environment, 2022, 30, 3999-4013.	2.4	10
3	Hemicelluloses-based hydrogels. , 2021, , 181-216.		2
4	High-Performance Hydrogel Adsorbent Based on Cellulose, Hemicellulose, and Lignin for Copper(II) Ion Removal. Polymers, 2021, 13, 3063.	2.0	16
5	Superadsorbent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution. International Journal of Biological Macromolecules, 2019, 127, 511-519.	3.6	68
6	Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly(N-isopropyl acrylamide). Cellulose, 2019, 26, 1909-1922.	2.4	43
7	06â€Hemicellulose-based magnetic hydrogel for enzyme drug immobilisation. Journal of Investigative Medicine, 2017, 65, A2.2-A2.	0.7	1
8	Preparation and Property of Xylan/Poly(Methacrylic Acid) Semi-Interpenetrating Network Hydrogel. International Journal of Polymer Science, 2016, 2016, 1-8.	1.2	15
9	Adsorption of methylene blue on hemicelluloseâ€based stimuliâ€responsive porous hydrogel. Journal of Applied Polymer Science, 2015, 132, .	1.3	32
10	Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydrate Polymers, 2015, 118, 16-23.	5.1	149
11	Physical–chemical properties of xylan/PAAc magnetic semiâ€interpenetrating network hydrogel. Polymer Composites, 2015, 36, 2317-2325.	2.3	11
12	Preparation and adsorption properties of a novel superabsorbent based on multiwalled carbon nanotubes-xylan composite and poly(methacrylic acid) for methylene blue from aqueous solution. Polymer Composites, 2014, 35, 1516-1528.	2.3	21
13	Preparation of hemicelluloseâ€gâ€poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polymer Composites, 2014, 35, 45-52.	2.3	25
14	Preparation and Properties of a Novel Hemicellulose-Based Magnetic Hydrogel. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 111-120.	2.2	10
15	Preparation and swelling behaviors of porous hemicelluloseâ€∢i>gâ€polyacrylamide hydrogels. Journal of Applied Polymer Science, 2013, 128, 1861-1870.	1.3	11
16	Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydrate Polymers, 2013, 92, 1357-1366.	5.1	179
17	Removal of low concentration Cr(VI) from aqueous solution by modified wheat straw. Journal of Applied Polymer Science, 2013, 129, 1555-1562.	1.3	7
18	Chemical Exploitation of Agricultural Residues as Novel Materials for Industrial Use. Advanced Materials Research, 2012, 531, 432-436.	0.3	1

#	Article	IF	CITATIONS
19	Structural characterization and isolation of lignin and hemicelluloses from barley straw. Industrial Crops and Products, 2011, 33, 588-598.	2.5	105
20	Extraction and characterization of lignins from maize stem and sugarcane bagasse. Journal of Applied Polymer Science, 2011, 120, 3587-3595.	1.3	22
21	Extraction and characterisation of hemicelluloses from maize stem. Phytochemical Analysis, 2010, 21, 406-415.	1.2	25
22	Rapid phthaloylation and succinylation of hemicelluloses by microwave irradiation. E-Polymers, 2008, 8, .	1.3	0
23	Modification and characterization of fibers of three sandy willow shrub species. Forestry Studies in China, 2006, 8, 16-21.	0.4	1
24	Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation and Stability, 2005, 88, 521-531.	2.7	105
25	Physicochemical characterisation of residual hemicelluloses isolated with cyanamide-activated hydrogen peroxide from organosolv pre-treated wheat straw. Bioresource Technology, 2005, 96, 1342-1349.	4.8	31
26	Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw. Carbohydrate Polymers, 2005, 60, 15-26.	5.1	118
27	Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw. Journal of Applied Polymer Science, 2005, 97, 322-335.	1.3	47
28	Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 2005, 340, 97-106.	1,1	545
29	Comparative Study of Hemicelluloses Isolated with Alkaline Peroxide from Lignocellulosic Materials. Journal of Wood Chemistry and Technology, 2005, 24, 239-262.	0.9	30
30	Extraction and Characterization of Original Lignin and Hemicelluloses from Wheat Straw. Journal of Agricultural and Food Chemistry, 2005, 53, 860-870.	2.4	226
31	Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydrate Research, 2004, 339, 291-300.	1.1	114
32	Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method. Polymer Degradation and Stability, 2004, 83, 47-57.	2.7	71
33	Comparative study of lignins from ultrasonic irradiated sugar-cane bagasse. Polymer International, 2004, 53, 1711-1721.	1.6	32
34	Acetylation of sugarcane bagasse hemicelluloses under mild reaction conditions by using NBS as a catalyst. Journal of Applied Polymer Science, 2004, 92, 53-61.	1.3	30
35	Oleoylation of sugarcane bagasse hemicelluloses using N -bromosuccinimide as a catalyst. Journal of the Science of Food and Agriculture, 2004, 84, 800-810.	1.7	46
36	Characteristics of degraded lignins obtained from steam exploded wheat straw. Polymer Degradation and Stability, 2004, 86, 245-256.	2.7	80

#	Article	IF	CITATIONS
37	Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials. Bioresource Technology, 2004, 95, 343-350.	4.8	140
38	Effect of tertiary amine catalysts on the acetylation of wheat straw for the production of oil sorption-active materials. Comptes Rendus Chimie, 2004, 7, 125-134.	0.2	20
39	Isolation and characterisation of cellulose obtained by a two-stage treatment with organosolv and cyanamide activated hydrogen peroxide from wheat straw. Carbohydrate Polymers, 2004, 55, 379-391.	5.1	78
40	Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers, 2004, 56, 195-204.	5.1	272
41	Physicochemical Characterization of Lignin Isolated with High Yield and Purity from Wheat Straw. International Journal of Polymer Analysis and Characterization, 2004, 9, 317-337.	0.9	19
42	Analysis and Characterization of Acetylated Sugarcane Bagasse Hemicelluloses. International Journal of Polymer Analysis and Characterization, 2004, 9, 229-244.	0.9	9
43	Comparative Study of Crude and Purified Cellulose from Wheat Straw. Journal of Agricultural and Food Chemistry, 2004, 52, 839-847.	2.4	108
44	Title is missing!. Journal of Materials Science, 2003, 38, 3915-3923.	1.7	55
45	Acetylation of wheat straw using simplified procedure and ultrasonic irradiation. Journal of Applied Polymer Science, 2003, 87, 1277-1284.	1.3	3
46	Comparative study of hemicelluloses released during two-stage treatments with acidic organosolv and alkaline peroxide from Caligonum monogoliacum and Tamarix spp. Polymer Degradation and Stability, 2003, 80, 315-325.	2.7	28
47	Preparation of sugarcane bagasse hemicellulosic succinates using NBS as a catalyst. Carbohydrate Polymers, 2003, 53, 483-495.	5.1	64
48	Hemicelluloses and Their Derivatives. ACS Symposium Series, 2003, , 2-22.	0.5	65
49	Inhomogeneities in the Chemical Structure of Sugarcane Bagasse Lignin. Journal of Agricultural and Food Chemistry, 2003, 51, 6719-6725.	2.4	160
50	Fractional Isolation and Physico-Chemical Characterization of Hemicelluloses by a Two-Stage Treatment fromHaloxylon ammodendronandElaeagnus angustifolia. Journal of Agricultural and Food Chemistry, 2002, 50, 6400-6407.	2.4	9
51	Acetylation of Rice Straw with or without Catalysts and Its Characterization as a Natural Sorbent in Oil Spill Cleanup. Journal of Agricultural and Food Chemistry, 2002, 50, 6428-6433.	2.4	172
52	EXTRACTION AND CHARACTERIZATION OF LIPOPHILIC EXTRACTIVES FROM RICE STRAW. II. SPECTROSCOPIC AND THERMAL ANALYSIS. Journal of Wood Chemistry and Technology, 2002, 22, 1-9.	0.9	8
53	Fractional separation and structural characterization of lignins and hemicelluloses by a two-stage treatment from rice straw. Separation Science and Technology, 2002, 37, 2433-2458.	1.3	9
54	Preparation and Characterization of Wheat Straw Hemicellulosic Succinates. International Journal of Polymer Analysis and Characterization, 2002, 7, 130-144.	0.9	12

#	Article	IF	CITATIONS
55	Analysis of Lignins Solubilized in Two-Stage Organosolv and Alkaline Peroxide Treatments from Haloxylon ammodendron and Elaeagnus angustifolia. International Journal of Polymer Analysis and Characterization, 2002, 7, 244-262.	0.9	2
56	Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Industrial Crops and Products, 2002, 15, 179-188.	2.5	147
57	Structural and thermal characterization of acetylated rice, wheat, rye, and barley straws and poplar wood fibre. Industrial Crops and Products, 2002, 16, 225-235.	2.5	41
58	Effect of ultrasound on the physicochemical properties of organosolv lignins from wheat straw. Journal of Applied Polymer Science, 2002, 84, 2512-2522.	1.3	25
59	Succinoylation of wheat straw hemicelluloses with a low degree of substitution in aqueous systems. Journal of Applied Polymer Science, 2002, 83, 757-766.	1.3	25
60	Effect of ultrasound on the structural and physiochemical properties of organosolv soluble hemicelluloses from wheat straw. Ultrasonics Sonochemistry, 2002, 9, 95-101.	3.8	90
61	Structural and physicochemical characterization of hemicelluloses isolated by alkaline peroxide from barley straw. Polymer International, 2002, 51, 117-124.	1.6	63
62	Physicochemical and thermal characterisation of residual hemicelluloses isolated by TAED activated peroxide from ultrasonic irradiated and alkali organosolv pre-treated wheat straw. Polymer Degradation and Stability, 2002, 78, 295-303.	2.7	19
63	Succinoylation of sago starch in the N,N-dimethylacetamide/lithium chloride system. Carbohydrate Polymers, 2002, 47, 323-330.	5.1	17
64	Fractional and structural characterization of hemicelluloses isolated by alkali and alkaline peroxide from barley straw. Carbohydrate Polymers, 2002, 49, 415-423.	5.1	114
65	Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. European Polymer Journal, 2002, 38, 1399-1407.	2.6	62
66	EXTRACTION AND CHARACTERIZATION OF LIPOPHILIC EXTRACTIVES FROM RICE STRAW. I. CHEMICAL COMPOSITION. Journal of Wood Chemistry and Technology, 2001, 21, 397-411.	0.9	21
67	Quantitative Determination of Hydroxycinnamic Acids in Wheat, Rice, Rye, and Barley Straws, Maize Stems, Oil Palm Frond Fiber, and Fast-Growing Poplar Wood. Journal of Agricultural and Food Chemistry, 2001, 49, 5122-5129.	2.4	137
68	Fractional and Structural Characterization of Lignins Isolated by Alkali and Alkaline Peroxide from Barley Straw. Journal of Agricultural and Food Chemistry, 2001, 49, 5322-5330.	2.4	32
69	SEPARATION AND CHARACTERIZATION OF LIPOPHILIC EXTRACTS FROM BARLEY STRAW. Separation Science and Technology, 2001, 36, 3027-3048.	1.3	11
70	The chemical modification of lignins with succinic anhydride in aqueous systems. Polymer Degradation and Stability, 2001, 71, 223-231.	2.7	124
71	Physico-chemical and thermal characterization of lignins from Caligonum monogoliacum and Tamarix spp Polymer Degradation and Stability, 2001, 72, 229-238.	2.7	85
72	Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 2001, 74, 307-319.	2.7	669

#	Article	IF	CITATIONS
73	Succinoylation of wheat straw hemicelluloses inN,N-dimethylformamide/lithium chloride systems. Polymer International, 2001, 50, 803-811.	1.6	16
74	Physicochemical characterization of lignins from rice straw by hydrogen peroxide treatment. Journal of Applied Polymer Science, 2001, 79, 719-732.	1.3	92
75	Identification and quantitation of lipophilic extractives from wheat straw. Industrial Crops and Products, 2001, 14, 51-64.	2.5	34
76	Fractional isolation and physico-chemical characterization of alkali-soluble lignins from fast-growing poplar wood. Polymer, 2000, 41, 8409-8417.	1.8	50
77	Hemicellulose-Based Porous Hydrogel for Methylene Blue Adsorption. Advanced Materials Research, 0, 560-561, 482-487.	0.3	3