Vladimir T Todorov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5751438/publications.pdf

Version: 2024-02-01

393982 47 1,225 19 citations h-index papers

34 g-index 48 48 48 1793 docs citations times ranked citing authors all docs

377514

#	Article	IF	CITATIONS
1	Physiology of Kidney Renin. Physiological Reviews, 2010, 90, 607-673.	13.1	227
2	The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR <i>ob</i> /i>ob type 2 diabetic mice with and without hypertension. American Journal of Physiology - Renal Physiology, 2014, 307, F317-F325.	1.3	162
3	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Molecular Psychiatry, 2020, 25, 1611-1617.	4.1	70
4	Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 48-54.	3.0	69
5	Peroxisome Proliferator-Activated Receptor-Î ³ Is Involved in the Control of Renin Gene Expression. Hypertension, 2007, 50, 939-944.	1.3	57
6	Inducible glomerular erythropoietin production in the adult kidney. Kidney International, 2015, 88, 1345-1355.	2.6	51
7	Tumor necrosis factor-α inhibits renin gene expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1046-R1051.	0.9	46
8	Tumor Necrosis Factor-α Activates NFκB to Inhibit Renin Transcription by Targeting cAMP-responsive Element. Journal of Biological Chemistry, 2004, 279, 1458-1467.	1.6	43
9	Pituitary Adenylate Cyclase–Activating Polypeptide Stimulates Renin Secretion via Activation of PAC1 Receptors. Journal of the American Society of Nephrology: JASN, 2007, 18, 1150-1156.	3.0	39
10	Angiotensin-2-Mediated Ca2+ Signaling in the Retinal Pigment Epithelium: Role of Angiotensin-Receptor-Associated-Protein and TRPV2 Channel. PLoS ONE, 2012, 7, e49624.	1.1	33
11	Angiotensin II inhibits renin gene transcription via the protein kinase C pathway. Pflugers Archiv European Journal of Physiology, 2002, 444, 499-505.	1.3	31
12	Role of CREB1 and NFκB-p65 in the Down-regulation of Renin Gene Expression by Tumor Necrosis Factor α. Journal of Biological Chemistry, 2005, 280, 24356-24362.	1.6	30
13	Antihypertensive and cardioprotective effects of the dipeptide isoleucine–tryptophan and whey protein hydrolysate. Acta Physiologica, 2015, 215, 167-176.	1.8	30
14	Extrarenal Progenitor Cells Do Not Contribute to Renal Endothelial Repair. Journal of the American Society of Nephrology: JASN, 2016, 27, 1714-1726.	3.0	30
15	Regulation of the renin expression in the retinal pigment epithelium by systemic stimuli. American Journal of Physiology - Renal Physiology, 2010, 299, F396-F403.	1.3	27
16	Persistent and inducible neogenesis repopulates progenitor renin lineage cells in the kidney. Kidney International, 2017, 92, 1419-1432.	2.6	27
17	Increased Renin Production in Mice With Deletion of Peroxisome Proliferator-Activated Receptor- \hat{l}^3 in Juxtaglomerular Cells. Hypertension, 2010, 55, 660-666.	1.3	25
18	Transgelin is a marker of repopulating mesangial cells after injury and promotes their proliferation and migration. Laboratory Investigation, 2012, 92, 812-826.	1.7	23

#	Article	IF	CITATIONS
19	The Pal3 Promoter Sequence Is Critical for the Regulation of Human Renin Gene Transcription by Peroxisome Proliferator-Activated Receptor- \hat{I}^3 . Endocrinology, 2008, 149, 4647-4657.	1.4	22
20	Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional. Journal of Biological Chemistry, 2015, 290, 17390-17400.	1.6	18
21	PPARÎ ³ -Dependent Regulation of Adenylate Cyclase 6 Amplifies the Stimulatory Effect of cAMP on Renin Gene Expression. Molecular Endocrinology, 2010, 24, 2139-2151.	3.7	15
22	Interference with $Gs\hat{1}_{\pm}$ -Coupled Receptor Signaling in Renin-Producing Cells Leads to Renal Endothelial Damage. Journal of the American Society of Nephrology: JASN, 2017, 28, 3479-3489.	3.0	15
23	Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. Journal of Clinical Investigation, 2022, 132, .	3.9	15
24	cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo. Pflugers Archiv European Journal of Physiology, 2011, 461, 567-577.	1.3	14
25	Prolylâ€4â€hydroxylases 2 and 3 control erythropoietin production in reninâ€expressing cells of mouse kidneys. Journal of Physiology, 2022, 600, 671-694.	1.3	13
26	COX-2-derived PGE2 triggers hyperplastic renin expression and hyperreninemia in aldosterone synthase-deficient mice. Pflugers Archiv European Journal of Physiology, 2018, 470, 1127-1137.	1.3	11
27	Differential Regulation of Cathepsin B and Prorenin Gene Expression in Renal Juxtaglomerular Cells. Kidney and Blood Pressure Research, 2001, 24, 75-78.	0.9	9
28	Progenitor Renin Lineage Cells are not involved in the regeneration of glomerular endothelial cells during experimental renal thrombotic microangiopathy. PLoS ONE, 2018, 13, e0196752.	1.1	8
29	Renin cells with defective Gsα/cAMP signaling contribute to renal endothelial damage. Pflugers Archiv European Journal of Physiology, 2019, 471, 1205-1217.	1.3	8
30	Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Reviews of Physiology, Biochemistry and Pharmacology, 2020, 177, 53-81.	0.9	8
31	Chicken Ovalbumin Upstream Promoter Transcription Factor II Regulates Renin Gene Expression. Journal of Biological Chemistry, 2012, 287, 24483-24491.	1.6	7
32	Identification of ATF2 as a transcriptional regulator of renin gene. Biological Chemistry, 2012, 393, 93-100.	1.2	7
33	Systemic ß adrenergic stimulation/ sympathetic nerve system stimulation influences intraocular RAS through cAMP in the RPE. Experimental Eye Research, 2019, 189, 107828.	1.2	6
34	ADMA elevation does not exacerbate development of diabetic nephropathy in mice with streptozotocin-induced diabetes mellitus. Atherosclerosis Supplements, 2019, 40, 100-105.	1.2	6
35	Back to the roots of regulated necrosis. Journal of Cell Biology, 2017, 216, 303-304.	2.3	5
36	New automatic quantification method of immunofluorescence and histochemistry in whole histological sections. Cellular Signalling, 2019, 62, 109335.	1.7	5

#	Article	IF	Citations
37	A new analysis approach for single nephron GFR in intravital microscopy of mice. F1000Research, 2020, 9, 1372.	0.8	4
38	PPARgamma-Dependent Control of Renin Expression: Molecular Mechanisms and Pathophysiological Relevance. PPAR Research, 2013, 2013, 1-6.	1.1	3
39	ADMA reduction does not protect mice with streptozotocin-induced diabetes mellitus from development of diabetic nephropathy. Atherosclerosis Supplements, 2017, 30, 319-325.	1.2	3
40	H.E.L.P apheresis exerts long term effects on the capacity of circulating proangiogenic cells. Atherosclerosis Supplements, 2017, 30, 232-237.	1.2	1
41	Patterns of differentiation of renin lineage cells during nephrogenesis. American Journal of Physiology - Renal Physiology, 2021, 321, F378-F388.	1.3	1
42	A new analysis approach for single nephron GFR in intravital microscopy of mice. F1000Research, 2020, 9, 1372.	0.8	1
43	The PPAR-gamma-binding sequence Pal3 is necessary for basal but dispensable for high-fat diet regulated human renin expression in the kidney. Pflugers Archiv European Journal of Physiology, 2017, 469, 1349-1357.	1.3	0
44	Renin gene expression is regulated by Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUPâ€₮F II). FASEB Journal, 2013, 27, 1165.12.	0.2	0
45	Abstract 373: Transgenic Overexpression of Alanine-glyoxylate Aminotransferase 2 Lowers Tissue Levels of Asymmetric Dimethylarginine and Improves Endothelial Function in Mouse Aortas. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	O
46	Abstract 453: Transgenic Overexpression of Alanine-glyoxylate Aminotransferase 2 in Mice Lowers Asymmetric Dimethylarginine and Improves Vasomotor Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
47	Abstract 185: Transgenic Overexpression of Alanine-glyoxylate Aminotransferase 2 in Mice Lowers Asymmetric Dimethylarginine and Improves Vasomotor Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	1.1	O