Colin J Barnstable

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5751257/publications.pdf

Version: 2024-02-01

43973 18075 15,049 147 48 120 citations h-index g-index papers 151 151 151 11656 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel Regulators of Retina Neovascularization: A Proteomics Approach. Journal of Proteome Research, 2022, 21, 101-117.	1.8	6
2	Uncoupling Proteins as Therapeutic Targets for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 5672.	1.8	5
3	Deletion of the Pedf gene leads to inflammation, photoreceptor loss and vascular disturbances in the retina. Experimental Eye Research, 2022, 222, 109171.	1.2	5
4	PEDF Gene Deletion Disrupts Corneal Innervation and Ocular Surface Function., 2021, 62, 18.		4
5	Inhibition of Epigenetic Modifiers LSD1 and HDAC1 Blocks Rod Photoreceptor Death in Mouse Models of Retinitis Pigmentosa. Journal of Neuroscience, 2021, 41, 6775-6792.	1.7	16
6	Uncoupling proteins in the mitochondrial defense against oxidative stress. Progress in Retinal and Eye Research, 2021, 83, 100941.	7.3	50
7	uncoupling protein UCP2. Neurochemistry International, 2021, 151, 105214.	1.9	10
8	PEDF is an endogenous inhibitor of VEGF-R2 angiogenesis signaling in endothelial cells. Experimental Eye Research, 2021, 213, 108828.	1.2	14
9	Pluripotent Stem Cells as Models of Retina Development. Molecular Neurobiology, 2019, 56, 6056-6070.	1.9	8
10	Mitochondrial Uncoupling Protein 2 Knockout Promotes Mitophagy to Decrease Retinal Ganglion Cell Death in a Mouse Model of Glaucoma. Journal of Neuroscience, 2019, 39, 2702-18.	1.7	26
11	Cell Autonomous Neuroprotection by the Mitochondrial Uncoupling Protein 2 in a Mouse Model of Glaucoma. Frontiers in Neuroscience, 2019, 13, 201.	1.4	12
12	Pluripotential stem cells as replacement therapy in degenerative diseases of the eye. Annals of Translational Medicine, 2019, 7, S156-S156.	0.7	1
13	Generation of Photoreceptor Precursors from Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2018, 14, 247-261.	5.6	7
14	Perineuronal nets labeled by monoclonal antibody VC1.1 ensheath interneurons expressing parvalbumin and calbindin in the rat amygdala. Brain Structure and Function, 2018, 223, 1133-1148.	1.2	8
15	The 3-Phosphoinositide-Dependent Protein Kinase 1 Inhibits Rod Photoreceptor Development. Frontiers in Cell and Developmental Biology, 2018, 6, 134.	1.8	2
16	Histone Deacetylase 1 Is Essential for Rod Photoreceptor Differentiation by Regulating Acetylation at Histone H3 Lysine 9 and Histone H4 Lysine 12 in the Mouse Retina. Journal of Biological Chemistry, 2017, 292, 2422-2440.	1.6	31
17	Activin Signals through SMAD2/3 to Increase Photoreceptor Precursor Yield during Embryonic Stem Cell Differentiation. Stem Cell Reports, 2017, 9, 838-852.	2.3	17
18	Identification and prediction of alternative transcription start sites that generate rod photoreceptor-specific transcripts from ubiquitously expressed genes. PLoS ONE, 2017, 12, e0179230.	1.1	6

#	Article	IF	CITATIONS
19	Mitochondrial Uncoupling Protein 2 (UCP2) Regulates Retinal Ganglion Cell Number and Survival. Journal of Molecular Neuroscience, 2016, 58, 461-469.	1.1	25
20	LSD1-Mediated Demethylation of H3K4me2 Is Required for the Transition from Late Progenitor to Differentiated Mouse Rod Photoreceptor. Molecular Neurobiology, 2016, 53, 4563-4581.	1.9	32
21	Uncoupling protein 2 in the glial response to stress: implications for neuroprotection. Neural Regeneration Research, $2016,11,1197.$	1.6	28
22	Regulation of Rod Photoreceptor Differentiation by STAT3 Is Controlled by a Tyrosine Phosphatase. Journal of Molecular Neuroscience, 2015, 55, 152-159.	1.1	12
23	Therapeutic Retrobulbar Inhibition of STAT3 Protects Ischemic Retina Ganglion Cells. Molecular Neurobiology, 2015, 52, 1364-1377.	1.9	20
24	Tetrandrine protects mouse retinal ganglion cells from ischemic injury. Drug Design, Development and Therapy, 2014, 8, 327.	2.0	19
25	Stat3 mediates LIFâ€induced protection of astrocytes against toxic ROS by upregulating the UPC2 mRNA pool. Glia, 2014, 62, 159-170.	2.5	35
26	Cell Type-Specific Epigenetic Signatures Accompany Late Stages of Mouse Retina Development. Advances in Experimental Medicine and Biology, 2014, 801, 3-8.	0.8	10
27	CD4 positive T helper cells contribute to retinal ganglion cell death in mouse model of ischemia reperfusion injury. Experimental Eye Research, 2013, 115, 131-139.	1.2	18
28	Developmentally Regulated Linker Histone H1c Promotes Heterochromatin Condensation and Mediates Structural Integrity of Rod Photoreceptors in Mouse Retina. Journal of Biological Chemistry, 2013, 288, 17895-17907.	1.6	54
29	Pigment Epithelium-Derived Factor (PEDF) Peptide Eye Drops Reduce Inflammation, Cell Death and Vascular Leakage in Diabetic Retinopathy in Ins2Akita Mice. Molecular Medicine, 2012, 18, 1387-1401.	1.9	114
30	Stage and Gene Specific Signatures Defined by Histones H3K4me2 and H3K27me3 Accompany Mammalian Retina Maturation In Vivo. PLoS ONE, 2012, 7, e46867.	1.1	47
31	Epigenetics rules. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 93-94.	0.2	1
32	Specific Protein Kinase C Isoforms Are Required for Rod Photoreceptor Differentiation. Journal of Neuroscience, 2011, 31, 18606-18617.	1.7	24
33	MAPK signaling during MÃ $\frac{1}{4}$ ller glial cell development in retina explant cultures. Journal of Ocular Biology, Diseases, and Informatics, 2010, 3, 129-133.	0.2	4
34	Protein Kinase C Regulates Rod Photoreceptor Differentiation Through Modulation of STAT3 Signaling. Advances in Experimental Medicine and Biology, 2010, 664, 21-28.	0.8	2
35	PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina. Journal of Ocular Biology, Diseases, and Informatics, 2009, 2, 1-11.	0.2	22
36	Mitochondria and the regulation of free radical damage in the eye. Journal of Ocular Biology, Diseases, and Informatics, 2009, 2, 145-148.	0.2	5

#	Article	IF	Citations
37	Bacterial endotoxin activates retinal pigment epithelial cells and induces their degeneration through IL-6 and IL-8 autocrine signaling. Molecular Immunology, 2009, 46, 1374-1386.	1.0	96
38	Comparison of gene expression during in vivo and in vitro postnatal retina development. Journal of Ocular Biology, Diseases, and Informatics, 2008, 1, 59-72.	0.2	11
39	STAT3 activation protects retinal ganglion cell layer neurons in response to stress. Experimental Eye Research, 2008, 86, 991-997.	1.2	42
40	Expression of ZnT and ZIP Zinc Transporters in the Human RPE and Their Regulation by Neurotrophic Factors., 2008, 49, 1221.		62
41	Epidemiology of and Risk Factors for Primary Open-Angle Glaucoma. , 2008, , 19-33.		0
42	Neuroprotective Factors and Retinal Degenerations. , 2007, , 433-454.		0
43	HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration. Science, 2006, 314, 989-992.	6.0	812
44	Molecular Mechanisms of Neuroprotection in the Eye., 2006, 572, 291-295.		17
45	A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Experimental Eye Research, 2006, 83, 824-833.	1.2	90
46	PEDF induces apoptosis in human endothelial cells by activating p38 MAP kinase dependent cleavage of multiple caspases. Biochemical and Biophysical Research Communications, 2006, 348, 1288-1295.	1.0	74
47	A biphasic pattern of gene expression during mouse retina development. BMC Developmental Biology, 2006, 6, 48.	2.1	42
48	Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates. BMC Genomics, 2006, 7, 248.	1.2	15
49	Control of Neovascularization and Cell Survival in the Eye by PEDF. , 2006, , 215-231.		0
50	Comprehensive in silico functional specification of mouse retina transcripts. BMC Genomics, 2005, 6, 40.	1.2	14
51	Uncoupling Protein-2 Is Critical for Nigral Dopamine Cell Survival in a Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 184-191.	1.7	181
52	Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science, 2005, 308, 385-389.	6.0	4,018
53	PEDF and the serpins: Phylogeny, sequence conservation, and functional domains. Journal of Structural Biology, 2005, 151, 130-150.	1.3	47
54	Expression of angiogenesis factors in human umbilical vein endothelial cells and their regulation by PEDF. Biochemical and Biophysical Research Communications, 2005, 326, 387-394.	1.0	43

#	Article	IF	CITATIONS
55	STAT3 activation in response to growth factors or cytokines participates in retina precursor proliferation. Experimental Eye Research, 2005, 81, 103-115.	1.2	66
56	STAT3-Mediated Signaling in the Determination of Rod Photoreceptor Cell Fate in Mouse Retina. , 2004, 45, 2407.		63
57	Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Progress in Retinal and Eye Research, 2004, 23, 561-577.	7.3	216
58	Retinoic acid and dexamethasone regulate the expression of PEDF in retinal and endothelial cells. Experimental Eye Research, 2004, 78, 945-955.	1.2	50
59	Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. Biochemical and Biophysical Research Communications, 2004, 316, 573-579.	1.0	150
60	Regulation of factors controlling angiogenesis in liver development: a role for PEDF in the formation and maintenance of normal vasculature. Biochemical and Biophysical Research Communications, 2004, 325, 408-413.	1.0	56
61	Modulation of synaptic function by cGMP and cGMP-gated cation channels. Neurochemistry International, 2004, 45, 875-884.	1.9	43
62	Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochemical Pharmacology, 2003, 65, 1917-1921.	2.0	77
63	PEDF: a multifaceted neurotrophic factor. Nature Reviews Neuroscience, 2003, 4, 628-636.	4.9	344
64	Expression and activation of STAT proteins during mouse retina development. Experimental Eye Research, 2003, 76, 421-431.	1.2	47
65	Developmental and tissue expression patterns of mouse Mpp4 gene. Biochemical and Biophysical Research Communications, 2003, 307, 229-235.	1.0	14
66	Therapeutic prospects for PEDF: more than a promising angiogenesis inhibitor. Trends in Molecular Medicine, 2003, 9, 244-250.	3 . 5	101
67	Uncoupling Protein 2 Prevents Neuronal Death Including that Occurring during Seizures: A Mechanism for Preconditioning. Endocrinology, 2003, 144, 5014-5021.	1.4	177
68	Coenzyme Q Induces Nigral Mitochondrial Uncoupling and Prevents Dopamine Cell Loss in a Primate Model of Parkinson's Disease. Endocrinology, 2003, 144, 2757-2760.	1.4	112
69	Mitochondrial Uncoupling Proteins: Regulators of Retinal Cell Death. Advances in Experimental Medicine and Biology, 2003, 533, 269-275.	0.8	5
70	Tissue culture studies of retinal development. Methods, 2002, 28, 439-447.	1.9	37
71	cGMP-induced presynaptic depression and postsynaptic facilitation at glutamatergic synapses in visual cortex. Brain Research, 2002, 927, 42-54.	1.1	30
72	Molecular Aspects of Vertebrate Retinal Development. Molecular Neurobiology, 2002, 26, 137-152.	1.9	34

#	Article	IF	CITATIONS
73	Protective effect of arachidonic acid on glutamate neurotoxicity in rat retinal ganglion cells. Investigative Ophthalmology and Visual Science, 2002, 43, 1835-42.	3.3	32
74	Developmental expression of intracellular targets of cGMP in rat visual cortex and alteration with dark rearing. Visual Neuroscience, 2001, 18, 109-118.	0.5	3
75	Miniature postsynaptic currents depend on Ca2+ released from internal stores via PLC/IP3 pathway. NeuroReport, 2001, 12, 2203-2207.	0.6	22
76	The subcellular localization of OTX2 is cell-type specific and developmentally regulated in the mouse retina. Molecular Brain Research, 2000, 78, 26-37.	2.5	111
77	Widespread expression of olfactory cyclic nucleotide-gated channel genes in rat brain: Implications for neuronal signalling., 1999, 32, 1-12.		50
78	HPC-7: A novel oligodendrocyte lineage protein which appears prior to galactocerebroside. Glia, 1998, 23, 169-179.	2.5	9
79	Substituted cGMP analogs can act as selective agonists of the rod photoreceptor cGMP-gated cation channel. Journal of Molecular Neuroscience, 1998, 10, 53-64.	1.1	55
80	Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Progress in Neurobiology, 1998, 56, 37-64.	2.8	83
81	Erx, a Novel Retina-Specific Homeodomain Transcription Factor, Can Interact with Ret 1/PCEI Sites. Biochemical and Biophysical Research Communications, 1998, 250, 175-180.	1.0	27
82	Developmental expression of the rat rod photoreceptor cGMP-gated cation channel. Visual Neuroscience, 1998, 15, 823-829.	0.5	5
83	Experimental preretinal neovascularization by laser-induced venous thrombosis in rats. Current Eye Research, 1997, 16, 26-33.	0.7	30
84	Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Current Opinion in Neurobiology, 1997, 7, 404-412.	2.0	108
85	Differentiation and Transdifferentiation of the Retinal Pigment Epithelium. International Review of Cytology, 1997, 171, 225-266.	6.2	121
86	Direct blockade of both cloned rat rod photoreceptor cyclic nucleotide-gated non-selective cation (CNG) channel α-subunit and native CNG channels from Xenopus rod outer segments by H-8, a non-specific cyclic nucleotide-dependent protein kinase inhibitor. Neuroscience Letters, 1997, 233, 37-40.	1.0	13
87	Immunostaining and Identification of Antigens. , 1997, , 197-205.		1
88	Identification of Competitive Antagonists of the Rod Photoreceptor cGMP-Gated Cation Channel: β-Phenyl-1,N2-etheno-Substituted cGMP Analogues as Probes of the cGMP-Binding Siteâ€. Biochemistry, 1996, 35, 16815-16823.	1.2	49
89	Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide-gated channels: novel targets for cAMP/cGMP function Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10440-10445.	3.3	110
90	Differential effects of bFGF on development of the rat retina. Brain Research, 1996, 723, 169-176.	1.1	50

#	Article	IF	CITATIONS
91	Ret 1, a <i>Cis</i> â€Acting Element of the Rat Opsin Promoter, Can Direct Gene Expression in Rod Photoreceptors. Journal of Neurochemistry, 1996, 67, 2494-2504.	2.1	26
92	An astrocytic binding site for neuronal Thy-1 and its effect on neurite outgrowth Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11195-11199.	3.3	33
93	A calcium-permeable cGMP-activated cation conductance in hippocampal neurons. NeuroReport, 1995, 6, 1761-1765.	0.6	88
94	Mechanisms of photoreceptor degenerations. Behavioral and Brain Sciences, 1995, 18, 470-470.	0.4	0
95	Rat retinal mýller cells express Thy-1 following neuronal cell death. Glia, 1995, 14, 23-32.	2.5	37
96	Isolation and characterization of the \hat{l}_{\pm} -subunit of the rat rod photoreceptor cGMP-gated cation channel. Journal of Molecular Neuroscience, 1995, 6, 289-302.	1.1	18
97	In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Research, 1995, 677, 300-310.	1.1	132
98	Characterization and regulation of the protein binding to a cis-acting element, RET 1, in the rat opsin promoter. Journal of Molecular Neuroscience, 1994, 5, 259-271.	1.1	18
99	Isolation and coding sequence of the rat rod opsin gene. Journal of Molecular Neuroscience, 1994, 5, 207-209.	1.1	4
100	Retinal ganglion cell survival is promoted by genetically modified astrocytes designed to secrete brain-derived neurotrophic factor (BDNF). Brain Research, 1994, 647, 30-36.	1,1	67
101	Retinal ganglion cells express a cGMP-gated cation conductance activatable by nitric oxide donors. Neuron, 1994, 12, 155-165.	3.8	237
102	Rapid Communication: A <i>cis</i> â€Acting Element, Tαâ€1, in the Upstream Region of Rod αâ€Transducin General Binds a Developmentally Regulated Retinaâ€Specific Nuclear Factor. Journal of Neurochemistry, 1994, 62, 396-399.	2.1	12
103	Differential Laminar Expression of Particulate and Soluble Guanylate Cyclase Genes in Rat Retina. Experimental Eye Research, 1993, 56, 51-62.	1.2	91
104	Glutamate and GABA in retinal circuitry. Current Opinion in Neurobiology, 1993, 3, 520-525.	2.0	105
105	Cyclic Nucleotide-Gated Nonselective Cation Channels: A Multifunctional Gene Family. , 1993, 66, 121-133.		10
106	Chapter 23 Molecular properties of GABAergic local-circuit neurons in the mammalian visual cortex. Progress in Brain Research, 1992, 90, 503-522.	0.9	3
107	Selectivity of Thy-1 monoclonal antibodies in enhancing neurite outgrowth. Neuroscience Letters, 1992, 137, 75-77.	1.0	14
108	Identification of Cell Types in Neural Cultures. , 1992, , 21-62.		1

#	Article	IF	Citations
109	A carbohydrate epitope defined by monoclonal antibody VC1.1 is found on N-CAM and other cell adhesion molecules. Brain Research, 1991, 559, 118-129.	1.1	47
110	Chapter 3 Molecular aspects of development of mammalian optic cup and formation of retinal cell types. Progress in Retinal and Eye Research, 1991, 10, 45-67.	0.8	31
111	Expression of a unique 56-kDa polypeptide by neurons in the subplate zone of the developing cerebral cortex Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 330-334.	3.3	37
112	Monoclonal antibody HNK-1 selectively stains a subpopulation of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Experimental Brain Research, 1990, 82, 566-74.	0.7	56
113	Cell commitment and differentiation in explants of embryonic rat neural retina. Comparison with the developmental potential of dissociated retina. Developmental Brain Research, 1990, 51, 69-84.	2.1	118
114	Expression of the cell surface antigens RET-PE2 and N-CAM by rat retinal pigment epithelial cells during development and in tissue culture. Experimental Eye Research, 1990, 51, 573-583.	1.2	48
115	Developmental and tissue-specific expression of the rod photoreceptor cGMP-gated ion channel gene. Biochemical and Biophysical Research Communications, 1990, 173, 463-470.	1.0	96
116	Expression of the growth cone specific epitope CDA 1 and the Synaptic vesicle protein SVP38 in the developing mammalian cerebral cortex. Journal of Comparative Neurology, 1989, 290, 154-168.	0.9	40
117	Monoclonal antibody VC1.1 selectively stains a population of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Experimental Brain Research, 1989, 78, 43-50.	0.7	29
118	Immunoelectron microscopical examination of the surface distribution of opsin in rat rod photoreceptor cells. Experimental Eye Research, 1989, 49, 13-29.	1.2	22
119	Molecular determinants of GABAergic local-circuit neurons in the visual cortex. Trends in Neurosciences, 1989, 12, 28-34.	4.2	99
120	Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell and Tissue Research, 1988, 253, 189-98.	1.5	199
121	Cell differentiation and pattern formation in the developing mammalian retina. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1988, 8, S27-S41.	0.0	7
122	A Molecular View of Vertebrate Retinal Development. , 1988, , 9-46.		0
123	Selective localization of glycine-accumulating cells in reaggregate culture of rat retina. Developmental Brain Research, 1987, 31, 124-128.	2.1	13
124	SVP38: A Synaptic Vesicle Protein Whose Appearance Correlates Closely with Synaptogenesis in the Rat Nervous System. Annals of the New York Academy of Sciences, 1987, 493, 493-496.	1.8	38
125	Histiotypic organization and cell differentiation in rat retinal reaggregate cultures. Brain Research, 1987, 437, 298-308.	1.1	51
126	A molecular view of vertebrate retinal development. Molecular Neurobiology, 1987, 1, 9-46.	1.9	74

#	Article	IF	CITATIONS
127	Immunological Studies of the Diversity and Development of the Mammalian Visual System. Immunological Reviews, 1987, 100, 47-78.	2.8	38
128	Identification and characterization of cell types in monolayer cultures of rat retina using monoclonal antibodies. Brain Research, 1986, 383, 110-120.	1.1	101
129	Neurobiology: Clues about glues in development. Nature, 1986, 321, 731-732.	13.7	1
130	A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina. Nature, 1986, 324, 459-462.	13.7	195
131	Lectin and antibody labelling of developing rat photoreceptor cells: an electron microscope immunocytochemical study. Journal of Neurocytology, 1986, 15, 219-230.	1.6	48
132	A marker of early amacrine cell development in rat retina. Developmental Brain Research, 1985, 20, 286-290.	2.1	298
133	Monoclonal Antibodies as Molecular Probes of the Nervous System., 1985,, 269-289.		9
134	Thy-1 antigen: A ganglion cell specific marker in rodent retina. Neuroscience, 1984, 11, 847-855.	1.1	291
135	Neurosciences: How molecular is neurobiology?. Nature, 1983, 306, 14-16.	13.7	9
136	The subcellular localization of rat photoreceptor-specific antigens. Journal of Neurocytology, 1983, 12, 785-803.	1.6	72
137	Monoclonal antibodies â€" tools to dissect the nervous system. Trends in Immunology, 1982, 3, 157-168.	7.5	3
138	Molecular heterogeneity and the nervous system. Nature, 1982, 298, 708-709.	13.7	0
139	Immunological Studies of the Retina. , 1982, , 183-214.		14
140	A gradient of membrane protein in the retina. Nature, 1981, 292, 13-14.	13.7	2
141	Monoclonal antibodies which recognize different cell types in the rat retina. Nature, 1980, 286, 231-235.	13.7	311
142	Monoclonal Antibodies for Analysis of the HLA System. Immunological Reviews, 1979, 47, 3-61.	2.8	721
143	The Structure and Evolution of the HLAâ€Bw4 and Bw6 Antigens. Tissue Antigens, 1979, 13, 334-341.	1.0	25
144	The Genetic Control of HLAâ€A and B Antigens in Somatic Cell Hybrids: Requirement for β ₂ Microglobulin. Tissue Antigens, 1978, 11, 96-112.	1.0	220

#	Article	IF	CITATIONS
145	Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell, 1978, 14, 9-20.	13.5	1,905
146	Isolation and N-terminal amino acid sequence of membrane-bound human HLA-A and HLA-B antigens. Nature, 1976, 261, 200-205.	13.7	93
147	Production of Specific Antisera to Human B Lymphocytes. Tissue Antigens, 1976, 7, 105-117.	1.0	22