Claudia Mattioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5750523/publications.pdf

Version: 2024-02-01

51	1,343	19	35
papers	citations	h-index	g-index
52	52	52	1358
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Genetic characterization of Italian and Spanish wild and domesticated chestnut trees. Scientia Horticulturae, 2022, 295, 110882.	1.7	9
2	Signatures of local adaptation to climate in natural populations of sweet chestnut (Castanea sativa) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf 5
3	Caring local biodiversity in a healing garden: Therapeutic benefits in young subjects with autism. Urban Forestry and Urban Greening, 2020, 47, 126511.	2.3	18
4	Adaptive evolution of chestnut forests to the impact of ink disease in Spain. Journal of Systematics and Evolution, 2020, 58, 504-516.	1.6	17
5	Monuments Unveiled: Genetic Characterization of Large Old Chestnut (Castanea sativa Mill.) Trees Using Comparative Nuclear and Chloroplast DNA Analysis. Forests, 2020, 11, 1118.	0.9	8
6	Genetic characterization and molecular fingerprint of traditional Umbrian tomato (Solanum) Tj ETQq0 0 0 rgBT / Resources and Crop Evolution, 2020, 67, 1807-1820.	Overlock 0.8	10 Tf 50 547 T 15
7	Genetic Analysis by nuSSR Markers of Silver Birch (Betula pendula Roth) Populations in Their Southern European Distribution Range. Frontiers in Plant Science, 2020, 11, 310.	1.7	13
8	Biocultural diversity of common walnut (<i>Juglans regia</i> L.) and sweet chestnut (<i>Castanea) Tj ETQq0 0 0</i>	rgBT/Ov	erlock 10 Tf 50
9	DNA analysis of Castanea sativaÂ(sweet chestnut) in Britain and Ireland: Elucidating European origins and genepool diversity. PLoS ONE, 2019, 14, e0222936.	1.1	10
10	Adaptive diversity and drought tolerance in Castanea sativa assessed through EST-SSR genic markers. Forestry, 2019, 92, 287-296.	1,2	28
11	Genetic diversity and molecular fingerprinting of <i>Prunus cerasus</i> var. <i>austera</i> from central Italy. Plant Biosystems, 2019, 153, 491-497.	0.8	2
12	Infestation potential of Dryocosmus kuriphilus Yasumatsu, 1951 (Hymenoptera: Cynipidae) in different natural populations of Castanea sativa Miller: an experimental ex situ test. International Journal of Pest Management, 2019, 65, 147-153.	0.9	4
13	Instant domestication process of European chestnut cultivars. Annals of Applied Biology, 2019, 174, 74-85.	1.3	23
14	Integration of genetic and seed fitness data to the conservation of isolated subpopulations of the Mediterranean plant <i>Malcolmia littorea</i> . Plant Biology, 2018, 20, 203-213.	1.8	5
15	Delineation of seed collection zones based on environmental and genetic characteristics for Quercus suber L. in Sardinia, Italy. IForest, 2018, 11, 651-659.	0.5	9
16	Short communication: Functional genetic diversity of chestnut (Castanea sativa Mill.) populations from southern Spain. Forest Systems, 2018, 26, eSC06.	0.1	8
17	A comparative study of European chestnut varieties in relation to adaptive markers. Agroforestry Systems, 2017, 91, 97-109.	0.9	17
18	Landscape genetics structure of European sweet chestnut (Castanea sativa Mill): indications for conservation priorities. Tree Genetics and Genomes, 2017, 13, 1.	0.6	41

#	Article	IF	CITATIONS
19	Database of European chestnut cultivars and definition of a core collection using simple sequence repeats. Tree Genetics and Genomes, 2017 , 13 , 1 .	0.6	27
20	Estimating the genetic diversity and structure of <i>Quercus trojana </i> Webb populations in Italy by SSRs: implications for management and conservation. Canadian Journal of Forest Research, 2017, 47, 331-339.	0.8	12
21	An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree (Argania spinosa) Populations: Potential for the Development of Improved Drought Tolerance. Frontiers in Plant Science, 2017, 8, 276.	1.7	31
22	Mapping the Genetic Diversity of & Samp; It; i& Samp; gt; Castanea sativa & Samp; It; /i & Samp; gt;: Exploiting Spatial Analysis for Biogeography and Conservation Studies. Journal of Geographic Information System, 2016, 08, 248-259.	0.3	7
23	Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: implications for conservation. Conservation Genetics, 2014, 15, 283-293.	0.8	27
24	New insights into the genetic structure of Araucaria araucana forests based on molecular and historic evidences. Tree Genetics and Genomes, 2014, 10, 839-851.	0.6	20
25	INTEGRATION OF DIFFERENT APPROACHES TO EXPLORE GENETIC AND ADAPTIVE VARIATION OF CASTANEA SATIVA MILL.: PERSPECTIVES FOR GENE CONSERVATION. Acta Horticulturae, 2014, , 91-98.	0.1	0
26	Microsatellite markers reveal a strong geographical structure in European populations of <i>Castanea sativa</i> (Fagaceae): Evidence for multiple glacial refugia. American Journal of Botany, 2013, 100, 951-961.	0.8	72
27	Microsatellite development for the relictual conifer <i>Araucaria araucana</i> (Araucariaceae) using nextâ€generation sequencing. American Journal of Botany, 2012, 99, e213-5.	0.8	8
28	Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biology, 2012, 12, 153.	1.6	54
29	Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genetics and Genomes, 2012, 8, 127-136.	0.6	50
30	MOLECULAR CHARACTERIZATION AND GENETIC DIVERSITY OF CITRUS AURANTIUM L. GERMPLASM FROM CENTRAL ITALY. Acta Horticulturae, 2011 , , 297 - 302 .	0.1	1
31	CHESTNUT GENETIC LANDSCAPE SHAPE IN SPAIN. Acta Horticulturae, 2011, , 843-847.	0.1	0
32	Primer Note: Microsatellite-AFLP development for <i>Araucaria araucana</i> (Mol.) K. Koch, an endangered conifer of Chilean and Argentinean native forests. Silvae Genetica, 2011, 60, 285-288.	0.4	5
33	AN INTEGRATED APPROACH TO ASSESS THE GENETIC AND ADAPTIVE VARIATION IN CASTANEA SATIVA MILL Acta Horticulturae, 2010, , 91-95.	0.1	4
34	Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genetics and Genomes, 2010, 6, 735-744.	0.6	56
35	A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics, 2010, 11, 570.	1.2	144

#	Article	IF	Citations
37	MICROSATELLITE-BASED CHARACTERIZATION OF TRADITIONAL CHESTNUT CULTIVARS OF ITALY. Acta Horticulturae, 2010, , 157-162.	0.1	O
38	GENETIC DIVERSITY IN EUROPEAN CHESTNUT POPULATIONS. Acta Horticulturae, 2010, , 163-167.	0.1	11
39	TRADITIONAL CHESTNUT CULTIVARS IN SOUTHERN SPAIN: A CASE OF ENDANGERED GENETIC RESOURCES. Acta Horticulturae, 2010, , 143-149.	0.1	2
40	Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeat (SSRs) markers. Annals of Applied Biology, 2009, 154, 389-398.		32
41	Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genetics and Genomes, 2008, 4, 563-574.	0.6	66
42	MANAGEMENT OF GENETIC RESOURCES OF THE MULTI-PURPOSE TREE SPECIES CASTANEA SATIVA MILL Acta Horticulturae, 2005, , 373-386.	0.1	7
43	MOLECULAR POPULATION GENETICS AND DYNAMICS OF CHESTNUT (CASTANEA SATIVA) IN EUROPE: INFERENCES FOR GENE CONSERVATION AND TREE IMPROVEMENT. Acta Horticulturae, 2005, , 403-412.	0.1	9
44	Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theoretical and Applied Genetics, 2002, 104, 1064-1070.	1.8	58
45	A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theoretical and Applied Genetics, 2001, 102, 1190-1199.	1.8	109
46	GENETIC STRUCTURE AND QUANTITATIVE TRAITS VARIATION IN F1 FULL-SIBS PROGENIES OF CASTANEA SATIVA MILL Acta Horticulturae, 1999, , 395-406.	0.1	5
47	Nickel and cadmium toxicity and enzymatic activity in nitolerant and non-tolerant populations of Silene italica Pers Journal of Plant Physiology, 1997, 150, 173-177.	1.6	55
48	Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum, 1997, 101, 787-792.	2.6	113
49	Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum, 1997, 101, 787-792.	2.6	12
50	Water Stress on Proline Content and Enzyme Activities in Triticum Durum Desf. Seedlings. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1120-1121.	0.0	0
51	Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator. Journal of Plant Nutrition, 1991, 14, 1067-1080.	0.9	63