
Claudia Mattioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5750523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics, 2010, 11, 570.	1.2	144
2	Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum, 1997, 101, 787-792.	2.6	113
3	A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theoretical and Applied Genetics, 2001, 102, 1190-1199.	1.8	109
4	Microsatellite markers reveal a strong geographical structure in European populations of <i>Castanea sativa</i> (Fagaceae): Evidence for multiple glacial refugia. American Journal of Botany, 2013, 100, 951-961.	0.8	72
5	Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genetics and Genomes, 2008, 4, 563-574.	0.6	66
6	Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator. Journal of Plant Nutrition, 1991, 14, 1067-1080.	0.9	63
7	Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theoretical and Applied Genetics, 2002, 104, 1064-1070.	1.8	58
8	Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genetics and Genomes, 2010, 6, 735-744.	0.6	56
9	Nickel and cadmium toxicity and enzymatic activity in nitolerant and non-tolerant populations of Silene italica Pers Journal of Plant Physiology, 1997, 150, 173-177.	1.6	55
10	Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biology, 2012, 12, 153.	1.6	54
11	Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genetics and Genomes, 2012, 8, 127-136.	0.6	50
12	Landscape genetics structure of European sweet chestnut (Castanea sativa Mill): indications for conservation priorities. Tree Genetics and Genomes, 2017, 13, 1.	0.6	41
13	Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeat (SSRs) markers. Annals of Applied Biology, 2009, 154, 389-398.	1.3	32
14	An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree (Argania spinosa) Populations: Potential for the Development of Improved Drought Tolerance. Frontiers in Plant Science, 2017, 8, 276.	1.7	31
15	Adaptive diversity and drought tolerance in Castanea sativa assessed through EST-SSR genic markers. Forestry, 2019, 92, 287-296.	1.2	28
16	Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: implications for conservation. Conservation Genetics, 2014, 15, 283-293.	0.8	27
17	Database of European chestnut cultivars and definition of a core collection using simple sequence repeats. Tree Genetics and Genomes, 2017, 13, 1.	0.6	27

18 Genetic characterisation of traditional chestnut varieties in Italy using microsatellites (simple) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 T

CLAUDIA MATTIONI

#	Article	IF	CITATIONS
19	Instant domestication process of European chestnut cultivars. Annals of Applied Biology, 2019, 174, 74-85.	1.3	23
20	New insights into the genetic structure of Araucaria araucana forests based on molecular and historic evidences. Tree Genetics and Genomes, 2014, 10, 839-851.	0.6	20
21	Caring local biodiversity in a healing garden: Therapeutic benefits in young subjects with autism. Urban Forestry and Urban Greening, 2020, 47, 126511.	2.3	18
22	A comparative study of European chestnut varieties in relation to adaptive markers. Agroforestry Systems, 2017, 91, 97-109.	0.9	17
23	Adaptive evolution of chestnut forests to the impact of ink disease in Spain. Journal of Systematics and Evolution, 2020, 58, 504-516.	1.6	17
24	Signatures of local adaptation to climate in natural populations of sweet chestnut (Castanea sativa) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
25	Genetic characterization and molecular fingerprint of traditional Umbrian tomato (Solanum) Tj ETQq1 1 0.7843 Resources and Crop Evolution, 2020, 67, 1807-1820.	14 rgBT /C 0.8	Dverlock 10 T 15
26	Biocultural diversity of common walnut (<i>Juglans regia</i> L.) and sweet chestnut (<i>Castanea) Tj ETQq0 0 C</i>	rgBT/Ov	erlock 10 Tf 5 14
27	Genetic Analysis by nuSSR Markers of Silver Birch (Betula pendula Roth) Populations in Their Southern European Distribution Range. Frontiers in Plant Science, 2020, 11, 310.	1.7	13
28	Estimating the genetic diversity and structure of <i>Quercus trojana</i> Webb populations in Italy by SSRs: implications for management and conservation. Canadian Journal of Forest Research, 2017, 47, 331-339.	0.8	12
29	Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum, 1997, 101, 787-792.	2.6	12
30	GENETIC DIVERSITY IN EUROPEAN CHESTNUT POPULATIONS. Acta Horticulturae, 2010, , 163-167.	0.1	11
31	DNA analysis of Castanea sativaÂ(sweet chestnut) in Britain and Ireland: Elucidating European origins and genepool diversity. PLoS ONE, 2019, 14, e0222936.	1.1	10
32	MOLECULAR POPULATION GENETICS AND DYNAMICS OF CHESTNUT (CASTANEA SATIVA) IN EUROPE: INFERENCES FOR GENE CONSERVATION AND TREE IMPROVEMENT. Acta Horticulturae, 2005, , 403-412.	0.1	9
33	Delineation of seed collection zones based on environmental and genetic characteristics for Quercus suber L. in Sardinia, Italy. IForest, 2018, 11, 651-659.	0.5	9
34	Genetic characterization of Italian and Spanish wild and domesticated chestnut trees. Scientia Horticulturae, 2022, 295, 110882.	1.7	9
35	Microsatellite development for the relictual conifer <i>Araucaria araucana</i> (Araucariaceae) using nextâ€generation sequencing. American Journal of Botany, 2012, 99, e213-5.	0.8	8
36	Monuments Unveiled: Genetic Characterization of Large Old Chestnut (Castanea sativa Mill.) Trees Using Comparative Nuclear and Chloroplast DNA Analysis. Forests, 2020, 11, 1118.	0.9	8

CLAUDIA MATTIONI

#	Article	IF	CITATIONS
37	Short communication: Functional genetic diversity of chestnut (Castanea sativa Mill.) populations from southern Spain. Forest Systems, 2018, 26, eSC06.	0.1	8
38	MANAGEMENT OF GENETIC RESOURCES OF THE MULTI-PURPOSE TREE SPECIES CASTANEA SATIVA MILL Acta Horticulturae, 2005, , 373-386.	0.1	7
39	Mapping the Genetic Diversity of <i>Castanea sativa</i> : Exploiting Spatial Analysis for Biogeography and Conservation Studies. Journal of Geographic Information System, 2016, 08, 248-259.	0.3	7
40	GENETIC STRUCTURE AND QUANTITATIVE TRAITS VARIATION IN F1 FULL-SIBS PROGENIES OF CASTANEA SATIVA MILL Acta Horticulturae, 1999, , 395-406.	0.1	5
41	Integration of genetic and seed fitness data to the conservation of isolated subpopulations of the Mediterranean plant <i>Malcolmia littorea</i> . Plant Biology, 2018, 20, 203-213.	1.8	5
42	Primer Note: Microsatellite-AFLP development for <i>Araucaria araucana</i> (Mol.) K. Koch, an endangered conifer of Chilean and Argentinean native forests. Silvae Genetica, 2011, 60, 285-288.	0.4	5
43	AN INTEGRATED APPROACH TO ASSESS THE GENETIC AND ADAPTIVE VARIATION IN CASTANEA SATIVA MILL Acta Horticulturae, 2010, , 91-95.	0.1	4
44	Infestation potential of Dryocosmus kuriphilus Yasumatsu, 1951 (Hymenoptera: Cynipidae) in different natural populations of Castanea sativa Miller: an experimental ex situ test. International Journal of Pest Management, 2019, 65, 147-153.	0.9	4
45	Genetic diversity and molecular fingerprinting of <i>Prunus cerasus</i> var. <i>austera</i> from central Italy. Plant Biosystems, 2019, 153, 491-497.	0.8	2
46	TRADITIONAL CHESTNUT CULTIVARS IN SOUTHERN SPAIN: A CASE OF ENDANGERED GENETIC RESOURCES. Acta Horticulturae, 2010, , 143-149.	0.1	2
47	MOLECULAR CHARACTERIZATION AND GENETIC DIVERSITY OF CITRUS AURANTIUM L. GERMPLASM FROM CENTRAL ITALY. Acta Horticulturae, 2011, , 297-302.	0.1	1
48	Water Stress on Proline Content and Enzyme Activities in Triticum Durum Desf. Seedlings. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1120-1121.	0.0	0
49	MICROSATELLITE-BASED CHARACTERIZATION OF TRADITIONAL CHESTNUT CULTIVARS OF ITALY. Acta Horticulturae, 2010, , 157-162.	0.1	0
50	CHESTNUT GENETIC LANDSCAPE SHAPE IN SPAIN. Acta Horticulturae, 2011, , 843-847.	0.1	0
51	INTEGRATION OF DIFFERENT APPROACHES TO EXPLORE GENETIC AND ADAPTIVE VARIATION OF CASTANEA SATIVA MILL.: PERSPECTIVES FOR GENE CONSERVATION. Acta Horticulturae, 2014, , 91-98.	0.1	0