Lawren Sack

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5750422/lawren-sack-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

186 17,631 65 130 h-index g-index citations papers 21,820 6.83 199 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
186	Distribution of biomass dynamics in relation to tree size in forests across the world <i>New Phytologist</i> , 2022 ,	9.8	2
185	Multi-Stemmed Habit in Trees Contributes Climate Resilience in Tropical Dry Forest. <i>Sustainability</i> , 2022 , 14, 6779	3.6	1
184	Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. <i>New Phytologist</i> , 2021 , 231, 601-616	9.8	22
183	Tree Canopies Reflect Mycorrhizal Composition. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL09276	4 4.9	7
182	Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. <i>Plant, Cell and Environment</i> , 2021 , 44, 2898-2911	8.4	4
181	Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. <i>New Phytologist</i> , 2021 , 231, 1401-1414	9.8	6
180	Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. <i>New Phytologist</i> , 2021 , 231, 1798-1813	9.8	11
179	Hydraulic-stomatal coordination in tree seedlings: tight correlation across environments and ontogeny in Acer pseudoplatanus. <i>New Phytologist</i> , 2021 , 232, 1297-1310	9.8	1
178	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. <i>Biological Conservation</i> , 2021 , 253, 108907	6.2	36
177	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37	6.1	28
176	The second warning to humanity: contributions and solutions from conservation physiology 2021 , 9,		6
175	Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. <i>New Phytologist</i> , 2021 , 230, 485-496	9.8	7
174	Developmental and biophysical determinants of grass leaf size worldwide. <i>Nature</i> , 2021 , 592, 242-247	50.4	12
173	Detecting forest response to droughts with global observations of vegetation water content. <i>Global Change Biology</i> , 2021 , 27, 6005-6024	11.4	9
172	Reconstructing leaf area from fragments: testing three methods using a fossil paleogene species. <i>American Journal of Botany</i> , 2020 , 107, 1786-1797	2.7	
171	Why is C4 photosynthesis so rare in trees?. Journal of Experimental Botany, 2020, 71, 4629-4638	7	3
170	Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. <i>Trends in Ecology and Evolution</i> , 2020 , 35, 908-918	10.9	37

(2019-2020)

169	Climatic sensitivity of species degetative and reproductive phenology in a Hawaiian montane wet forest. <i>Biotropica</i> , 2020 , 52, 825-835	2.3	О
168	Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars. <i>Journal of Experimental Botany</i> , 2020 , 71, 7286-7	300	6
167	Functional traits indicate faster resource acquisition for alien herbs than native shrubs in an urban Mediterranean shrubland. <i>Biological Invasions</i> , 2020 , 22, 2699-2712	2.7	5
166	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). <i>Methods in Ecology and Evolution</i> , 2020 , 11, 22-37	7.7	35
165	Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. <i>Journal of Ecology</i> , 2020 , 108, 1030-1045	6	14
164	TRY plant trait database - enhanced coverage and open access. <i>Global Change Biology</i> , 2020 , 26, 119-18	811.4	399
163	Trait Multi-Functionality in Plant Stress Response. Integrative and Comparative Biology, 2020, 60, 98-112	2 2.8	12
162	When facilitation meets clonal integration in forest canopies. <i>New Phytologist</i> , 2020 , 225, 135-142	9.8	15
161	Prediction of leaf water potential and relative water content using terahertz radiation spectroscopy. <i>Plant Direct</i> , 2020 , 4, e00197	3.3	13
160	Patterns of nitrogen-fixing tree abundance in forests across Asia and America. <i>Journal of Ecology</i> , 2019 , 107, 2598-2610	6	15
159	Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry. <i>New Phytologist</i> , 2019 , 223, 134-7	1498	44
158	Shoot surface water uptake enables leaf hydraulic recovery in Avicennia marina. <i>New Phytologist</i> , 2019 , 224, 1504-1511	9.8	12
157	A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. <i>Nature Communications</i> , 2019 , 10, 3398	17.4	46
156	Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. <i>New Phytologist</i> , 2019 , 222, 1256-1270	9.8	40
155	Seedling response to water stress in valley oak (Quercus lobata) is shaped by different gene networks across populations. <i>Molecular Ecology</i> , 2019 , 28, 5248-5264	5.7	9
154	Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. <i>Ecology</i> , 2019 , 100, e02591	4.6	13
153	Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs. <i>Trees - Structure and Function</i> , 2019 , 33, 507-519	2.6	4
152	An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. <i>Functional Ecology</i> , 2019 , 33, 712-734	5.6	22

151	Ecosystem Traits Linking Functional Traits to Macroecology. <i>Trends in Ecology and Evolution</i> , 2019 , 34, 200-210	10.9	64
150	Embracing 3D Complexity in Leaf Carbon-Water Exchange. <i>Trends in Plant Science</i> , 2019 , 24, 15-24	13.1	32
149	Regional forcing explains local species diversity and turnover on tropical islands. <i>Global Ecology and Biogeography</i> , 2018 , 27, 474-486	6.1	26
148	Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. <i>Plant, Cell and Environment</i> , 2018 , 41, 342-353	8.4	17
147	ABA Accumulation in Dehydrating Leaves Is Associated with Decline in Cell Volume, Not Turgor Pressure. <i>Plant Physiology</i> , 2018 , 176, 489-495	6.6	34
146	Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. <i>Functional Ecology</i> , 2018 , 32, 2285-2297	5.6	13
145	Leaf rehydration capacity: Associations with other indices of drought tolerance and environment. <i>Plant, Cell and Environment</i> , 2018 , 41, 2638-2653	8.4	13
144	Global importance of large-diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864	6.1	185
143	Climate sensitive size-dependent survival in tropical trees. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1436-	1 44 2	23
142	OpenNahele: the open Hawaiian forest plot database. <i>Biodiversity Data Journal</i> , 2018 , e28406	1.8	5
141	Variation in leaf chlorophyll concentration from tropical to cold-temperate forests: Association with gross primary productivity. <i>Ecological Indicators</i> , 2018 , 85, 383-389	5.8	37
140	Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. <i>Functional Ecology</i> , 2018 , 32, 20-28	5.6	56
139	Repeated range expansion and niche shift in a volcanic hotspot archipelago: Radiation of C Hawaiian subgenus (Euphorbiaceae). <i>Ecology and Evolution</i> , 2018 , 8, 8523-8536	2.8	5
138	A methodology to derive global maps of leaf traits using remote sensing and climate data. <i>Remote Sensing of Environment</i> , 2018 , 218, 69-88	13.2	58
137	The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in. <i>Plant Physiology</i> , 2018 , 178, 1584-1601	6.6	27
136	Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. <i>American Journal of Botany</i> , 2018 , 105, 1672-1687	2.7	7
135	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale". <i>Science</i> , 2018 , 360,	33.3	4
134	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale". <i>Science</i> , 2018 , 360,	33.3	7

(2016-2017)

133	Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. <i>Plant Physiology</i> , 2017 , 173, 1197-1210	6.6	124
132	Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. <i>Biology Letters</i> , 2017 , 13,	3.6	22
131	The Sites of Evaporation within Leaves. <i>Plant Physiology</i> , 2017 , 173, 1763-1782	6.6	59
130	Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. <i>Scientific Reports</i> , 2017 , 7, 42085	4.9	23
129	The anatomical and compositional basis of leaf mass per area. <i>Ecology Letters</i> , 2017 , 20, 412-425	10	87
128	Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources. <i>Plant, Cell and Environment</i> , 2017 , 40, 1576-1591	8.4	40
127	Global climatic drivers of leaf size. <i>Science</i> , 2017 , 357, 917-921	33.3	334
126	Predicting habitat affinities of plant species using commonly measured functional traits. <i>Journal of Vegetation Science</i> , 2017 , 28, 1082-1095	3.1	28
125	The causes and consequences of leaf hydraulic decline with dehydration. <i>Journal of Experimental Botany</i> , 2017 , 68, 4479-4496	7	64
124	Mapping local and global variability in plant trait distributions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E10937-E10946	11.5	103
123	Plant diversity increases with the strength of negative density dependence at the global scale. <i>Science</i> , 2017 , 356, 1389-1392	33.3	150
122	Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. <i>New Phytologist</i> , 2017 , 213, 1076-1092	9.8	67
121	Optimal plant water economy. Plant, Cell and Environment, 2017, 40, 881-896	8.4	65
120	Hydraulic basis for the evolution of photosynthetic productivity. <i>Nature Plants</i> , 2016 , 2, 16072	11.5	126
119	The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13098-1310.	3 ^{11.5}	228
118	Trait convergence and diversification arising from a complex evolutionary history in Hawaiian species of Scaevola. <i>Oecologia</i> , 2016 , 181, 1083-100	2.9	4
117	Does climate directly influence NPP globally?. <i>Global Change Biology</i> , 2016 , 22, 12-24	11.4	66
116	Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes. <i>Ecology</i> , 2016 , 97, 503-14	4.6	21

115	Density-dependent seedling mortality varies with light availability and species abundance in wet and dry Hawaiian forests. <i>Journal of Ecology</i> , 2016 , 104, 773-780	6	26
114	Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. <i>Australian Journal of Botany</i> , 2016 , 64, 715	1.2	166
113	Sources of Error in Mammalian Genetic Screens. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 2781-90	3.2	43
112	Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5024-9	11.5	361
111	The Developmental Basis of Stomatal Density and Flux. <i>Plant Physiology</i> , 2016 , 171, 2358-63	6.6	49
110	Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. <i>Tree Physiology</i> , 2016 , 36, 1562-1572	4.2	20
109	Why are leaves hydraulically vulnerable?. Journal of Experimental Botany, 2016, 67, 4917-9	7	16
108	Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics. <i>American Journal of Botany</i> , 2015 , 102, 1160-73	2.7	21
107	Relationships between specific leaf area and leaf composition in succulent and non-succulent species of contrasting semi-desert communities in south-eastern Spain. <i>Journal of Arid Environments</i> , 2015 , 118, 69-83	2.5	15
106	Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. <i>Functional Ecology</i> , 2015 , 29, 1268-1277	5.6	108
105	How Does Leaf Anatomy Influence Water Transport outside the Xylem?. <i>Plant Physiology</i> , 2015 , 168, 1616-35	6.6	108
104	How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. <i>New Phytologist</i> , 2015 , 208, 736-49	9.8	153
103	Are leaves 'freewheelin'? Testing for a wheeler-type effect in leaf xylem hydraulic decline. <i>Plant, Cell and Environment,</i> 2015 , 38, 534-43	8.4	31
102	Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. <i>New Phytologist</i> , 2015 , 207, 43-58	9.8	59
101	CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. <i>Global Change Biology</i> , 2015 , 21, 528-49	11.4	368
100	Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants. <i>Plant, Cell and Environment</i> , 2015 , 38, 2735-46	8.4	26
99	The Anatomical Determinants of Leaf Hydraulic Function 2015 , 255-271		7
98	Extending the generality of leaf economic design principles in the cycads, an ancient lineage. <i>New Phytologist</i> , 2015 , 206, 817-29	9.8	27

(2013-2014)

97	Leaf life span and the leaf economic spectrum in the context of whole plant architecture. <i>Journal of Ecology</i> , 2014 , 102, 328-336	6	68
96	Which is a better predictor of plant traits: temperature or precipitation?. <i>Journal of Vegetation Science</i> , 2014 , 25, 1167-1180	3.1	217
95	Global analysis of plasticity in turgor loss point, a key drought tolerance trait. <i>Ecology Letters</i> , 2014 , 17, 1580-90	10	140
94	Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems. <i>Oikos</i> , 2014 , 123, 1281-1290	4	22
93	Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. <i>New Phytologist</i> , 2014 , 203, 842-50	9.8	104
92	Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances. <i>New Phytologist</i> , 2014 , 204, 92-104	9.8	29
91	Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests. <i>PLoS ONE</i> , 2014 , 9, e103268	3.7	37
90	Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014). <i>Journal of Experimental Botany</i> , 2014 , 65, 5115-23	3 7	21
89	Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision. <i>Plant Physiology</i> , 2014 , 166, 829-38	6.6	35
88	Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. <i>Plant Physiology</i> , 2014 , 164, 1772-88	6.6	126
87	Native trees show conservative water use relative to invasive trees: results from a removal experiment in a Hawaiian wet forest 2014 , 2, cou016		48
86	Trade-offs in seedling growth and survival within and across tropical forest microhabitats. <i>Ecology</i> and Evolution, 2014 , 4, 3755-67	2.8	28
85	Making the best of the worst of times: traits underlying combined shade and drought tolerance of Ruscus aculeatus and Ruscus microglossum (Asparagaceae). <i>Functional Plant Biology</i> , 2013 , 41, 11-24	2.7	16
84	What is conservation physiology? Perspectives on an increasingly integrated and essential science (I2013 , 1, cot001		283
83	Ecological variation in leaf biomechanics and its scaling with tissue structure across three mediterranean-climate plant communities. <i>Functional Ecology</i> , 2013 , 27, 544-554	5.6	27
82	Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. <i>New Phytologist</i> , 2013 , 198, 983-1000	9.8	407
81	New handbook for standardised measurement of plant functional traits worldwide. <i>Australian Journal of Botany</i> , 2013 , 61, 167	1.2	1983
80	Is hemiepiphytism an adaptation to high irradiance? Testing seedling responses to light levels and drought in hemiepiphytic and non-hemiepiphytic Ficus. <i>Physiologia Plantarum</i> , 2013 , 148, 74-86	4.6	13

79	Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. <i>Journal of Experimental Botany</i> , 2013 , 64, 3965-81	7	136
78	How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. <i>Journal of Experimental Botany</i> , 2013 , 64, 4053-80	7	130
77	Seedling recruitment factors in low-diversity Hawaiian wet forest: towards global comparisons among tropical forests. <i>Ecosphere</i> , 2013 , 4, art24	3.1	19
76	Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field. <i>Annals of Botany</i> , 2013 , 112, 911-8	4.1	22
75	Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. <i>PLoS ONE</i> , 2013 , 8, e64502	3.7	53
74	Allometry of cells and tissues within leaves. American Journal of Botany, 2013, 100, 1936-48	2.7	47
73	The Evolution of Photosynthetic Anatomy in Viburnum (Adoxaceae). <i>International Journal of Plant Sciences</i> , 2013 , 174, 1277-1291	2.6	28
72	The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza. <i>PLoS ONE</i> , 2013 , 8, e66016	3.7	16
71	The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. <i>Ecology Letters</i> , 2012 , 15, 393-405	10	489
70	Measurements of stem xylem hydraulic conductivity in the laboratory and field. <i>Methods in Ecology and Evolution</i> , 2012 , 3, 685-694	7.7	84
69	Developmentally based scaling of leaf venation architecture explains global ecological patterns. <i>Nature Communications</i> , 2012 , 3, 837	17.4	200
68	Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. <i>Methods in Ecology and Evolution</i> , 2012 , 3, 880-888	7.7	119
67	Hydraulic conductance of Acacia phyllodes (foliage) is driven by primary nerve (vein) conductance and density. <i>Plant, Cell and Environment</i> , 2012 , 35, 158-68	8.4	31
66	Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. <i>Plant, Cell and Environment</i> , 2012 , 35, 857-71	8.4	86
65	Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. <i>Frontiers in Plant Science</i> , 2012 , 3, 259	6.2	85
64	Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae). <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 3905-13	4.4	62
63	Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2012 , 367, 583-600	5.8	132
62	Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. <i>Journal of Experimental Botany</i> , 2012 , 63, 643-58	7	89

(2010-2012)

61	Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM). <i>Journal of Visualized Experiments</i> , 2012 ,	1.6	26
60	Drivers of morphological diversity and distribution in the Hawaiian fern flora: trait associations with size, growth form, and environment. <i>American Journal of Botany</i> , 2011 , 98, 956-66	2.7	18
59	Human impacts on leaf economics in heterogeneous landscapes: the effect of harvesting non-timber forest products from African mahogany across habitats and climates. <i>Journal of Applied Ecology</i> , 2011 , 48, 844-852	5.8	13
58	Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. <i>Plant, Cell and Environment</i> , 2011 , 34, 137-48	8.4	231
57	Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula). <i>Plant, Cell and Environment</i> , 2011 , 34, 1079-87	8.4	39
56	TRY 🖟 global database of plant traits. Global Change Biology, 2011 , 17, 2905-2935	11.4	1623
55	Does global stoichiometric theory apply to bryophytes? Tests across an elevation Boil age ecosystem matrix on Mauna Loa, Hawaii. <i>Journal of Ecology</i> , 2011 , 99, 122-134	6	23
54	Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance. <i>New Phytologist</i> , 2011 , 191, 480-495	9.8	201
53	Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. <i>New Phytologist</i> , 2011 , 191, 996-1005	9.8	61
52	Shifts in bryophyte carbon isotope ratio across an elevation Boil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?. <i>Oecologia</i> , 2011 , 166, 11-22	2.9	14
51	The role of bundle sheath extensions and life form in stomatal responses to leaf water status. <i>Plant Physiology</i> , 2011 , 156, 962-73	6.6	70
50	Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy. <i>Ecology</i> , 2011 , 92, 2117-30	4.6	38
49	Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. <i>Plant Physiology</i> , 2011 , 156, 832-43	6.6	237
48	How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. <i>New Phytologist</i> , 2010 , 185, 156-72	9.8	96
47	Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa. <i>Plant, Cell and Environment</i> , 2010 , 33, 2084-100	8.4	50
46	Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. <i>Functional Ecology</i> , 2010 , 24, 731-740	5.6	62
45	Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 2010 , 37, 488	2.7	203
44	Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. <i>American Naturalist</i> , 2010 , 175, 447-60	3.7	122

43	Comparative water use of native and invasive plants at multiple scales: a global meta-analysis. <i>Ecology</i> , 2010 , 91, 2705-15	4.6	90
42	Digital data collection in forest dynamics plots. <i>Methods in Ecology and Evolution</i> , 2010 , 1, 274-279	7.7	6
41	A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. <i>Functional Plant Biology</i> , 2010 , 37, 687	2.7	13
40	Hawaiian native forest conserves water relative to timber plantation: species and stand traits influence water use 2009 , 19, 1429-43		58
39	Response to comment on Coomes et al . Bcaling of xylem vessels and veins within the leaves of oak species [Biology Letters, 2009, 5, 381-382]	3.6	1
38	Leaf Trait Diversification and Design in Seven Rare Taxa of the Hawaiian Plantago Radiation. <i>International Journal of Plant Sciences</i> , 2009 , 170, 61-75	2.6	108
37	The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. <i>Plant, Cell and Environment</i> , 2008 , 31, 1803-12	8.4	100
36	Scaling of xylem vessels and veins within the leaves of oak species. <i>Biology Letters</i> , 2008 , 4, 302-6	3.6	56
35	Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1567-72	11.5	124
34	Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. <i>Functional Plant Biology</i> , 2008 , 35, 725-737	2.7	59
33	Scaling of Frond Form in Hawaiian Tree Fern Cibotium glaucum: Compliance with Global Trends and Application for Field Estimation. <i>Biotropica</i> , 2008 , 40, 686-691	2.3	12
32	Fossil leaf economics quantified: calibration, Eocene case study, and implications. <i>Paleobiology</i> , 2007 , 33, 574-589	2.6	96
31	Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. <i>Functional Ecology</i> , 2007 , 21, 1063-1071	5.6	65
30	Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. <i>New Phytologist</i> , 2007 , 175, 686-698	9.8	155
29	Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation. <i>Biotropica</i> , 2007 , 40, 070606001740001-???	2.3	10
28	Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. <i>Oecologia</i> , 2007 , 151, 387-400	2.9	92
27	Atmospheric and soil drought reduce nocturnal conductance in live oaks. <i>Tree Physiology</i> , 2007 , 27, 611	-2402	82
26	How strong is intracanopy leaf plasticity in temperate deciduous trees?. <i>American Journal of Botany</i> , 2006 , 93, 829-39	2.7	142

25	Structural determinants of leaf light-harvesting capacity and photosynthetic potentials 2006, 385-419		110
24	Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. <i>Ecology</i> , 2006 , 87, 483-91	4.6	258
23	Leaf hydraulics. Annual Review of Plant Biology, 2006, 57, 361-81	30.7	655
22	Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity?. <i>Plant Biology</i> , 2005 , 7, 495-500	3.7	10
21	Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. <i>New Phytologist</i> , 2005 , 167, 403-13	9.8	159
20	Leaf Hydraulics and Its Implications in Plant Structure and Function 2005 , 93-114		40
19	How are leaves plumbed inside a branch? Differences in leaf-to-leaf hydraulic sectoriality among six temperate tree species. <i>Journal of Experimental Botany</i> , 2005 , 56, 2267-73	7	36
18	The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response?. <i>Journal of Experimental Botany</i> , 2005 , 56, 737-44	7	105
17	Hydraulic analysis of water flow through leaves of sugar maple and red oak. <i>Plant Physiology</i> , 2004 , 134, 1824-33	6.6	160
16	The Cohesion-Tension Theory. <i>New Phytologist</i> , 2004 , 163, 451-452	9.8	54
16 15	The Cohesion-Tension Theory. <i>New Phytologist</i> , 2004 , 163, 451-452 Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation?. <i>Oikos</i> , 2004 , 107, 110-127	9.8	54 146
	Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche		
15	Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation?. <i>Oikos</i> , 2004 , 107, 110-127 The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum	4	146
15 14	Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation?. <i>Oikos</i> , 2004 , 107, 110-127 The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). <i>American Journal of Botany</i> , 2003 , 90, 32-9 The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest	2.7	146 33
15 14 13	Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation?. <i>Oikos</i> , 2004 , 107, 110-127 The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). <i>American Journal of Botany</i> , 2003 , 90, 32-9 The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. <i>Plant Ecology</i> , 2003 , 168, 139-163 The Bydrologylbf leaves: co-ordination of structure and function in temperate woody species.	2.7	146 33 100
15 14 13	Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation?. <i>Oikos</i> , 2004 , 107, 110-127 The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). <i>American Journal of Botany</i> , 2003 , 90, 32-9 The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. <i>Plant Ecology</i> , 2003 , 168, 139-163 The flydrology[bf leaves: co-ordination of structure and function in temperate woody species. <i>Plant, Cell and Environment</i> , 2003 , 26, 1343-1356 Crossovers in seedling relative growth rates between low and high irradiance: analyses and	2.7 1.7 8.4	146 33 100 490
15 14 13 12	Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation? <i>Oikos</i> , 2004 , 107, 110-127 The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). <i>American Journal of Botany</i> , 2003 , 90, 32-9 The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. <i>Plant Ecology</i> , 2003 , 168, 139-163 The Bydrologylbf leaves: co-ordination of structure and function in temperate woody species. <i>Plant, Cell and Environment</i> , 2003 , 26, 1343-1356 Crossovers in seedling relative growth rates between low and high irradiance: analyses and ecological potential. <i>Functional Ecology</i> , 2003 , 17, 281-287 The combined impacts of deep shade and drought on the growth and biomass allocation of	4 2.7 1.7 8.4 5.6	146 33 100 490 25

7	Global allocation rules for patterns of biomass partitioning. <i>Science</i> , 2002 , 296, 1923	33.3	28
6	Why do species of woody seedlings change rank in relative growth rate between low and high irradiance?. <i>Functional Ecology</i> , 2001 , 15, 145-154	5.6	88
5	Optimization of the Short-Circuit Behaviour of NPT-IGBT by the Gate Drive. <i>EPE Journal (European Power Electronics and Drives Journal)</i> , 1996 , 6, 20-26	0.4	
4	NOTE. ISOLATION OF FOUR NEW STRAINS OF CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) FROM SOIL SAMPLES1. <i>Journal of Phycology</i> , 1994 , 30, 770-773	3	33
3	Causes of variation in leaf-level drought tolerance within an Amazonian forest. <i>The Journal of Plant Hydraulics</i> , 3, e004		24
2	Climatic sensitivity of speciesDegetative and reproductive phenology in a Hawaiian montane wet fores	it	1
1	Global Root Traits (GRooT) Database		2