Prashant Shekhar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5750186/publications.pdf

Version: 2024-02-01

30 papers 3,508 citations

394286 19 h-index 501076 28 g-index

30 all docs 30 docs citations

30 times ranked

4350 citing authors

#	Article	IF	CITATIONS
1	Long-Range Dipole–Dipole Interactions in a Plasmonic Lattice. Nano Letters, 2022, 22, 22-28.	4.5	28
2	Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium. Optics Express, 2022, 30, 12630.	1.7	2
3	Two-dimensional extreme skin depth engineering for CMOS photonics. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1307.	0.9	7
4	Probabilistic vortex crossing criterion for superconducting nanowire single-photon detectors. Journal of Applied Physics, 2020, 127, .	1.1	4
5	Demonstration of Two-Dimensional Extreme Skin Depth Engineering in CMOS Photonics Foundry. , 2020, , .		O
6	High-Temperature Polaritons in Ceramic Nanotube Antennas. Nano Letters, 2019, 19, 8565-8571.	4.5	7
7	Definition of polaritonic fluctuations in natural hyperbolic media. Physical Review A, 2019, 99, .	1.0	4
8	Fast electrons interacting with a natural hyperbolic medium: bismuth telluride. Optics Express, 2019, 27, 6970.	1.7	13
9	Observation of long-range dipole-dipole interactions in hyperbolic metamaterials. Science Advances, 2018, 4, eaar5278.	4.7	57
10	Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nature Communications, 2018, 9, 1893.	5.8	140
11	Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science, 2018, 360, 1451-1455.	6.0	133
12	Fundamental figures of merit for engineering FÃ \P rster resonance energy transfer. Optics Express, 2018, 26, 19371.	1.7	42
13	Dual-band quasi-coherent radiative thermal source. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 216, 99-104.	1.1	13
14	Switching Purcell effect with nonlinear epsilon-near-zero media. Applied Physics Letters, 2018, 113, 021103.	1.5	9
15	Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases. Physical Review A, 2018, 98, .	1.0	36
16	Extreme ultraviolet plasmonics and Cherenkov radiation in silicon. Optica, 2018, 5, 1590.	4.8	24
17	Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics. Journal of Optics (United Kingdom), 2017, 19, 055101.	1.0	19
18	Super-Coulombic atom–atom interactions in hyperbolic media. Nature Communications, 2017, 8, 14144.	5.8	67

#	Article	IF	Citations
19	Momentum-Resolved Electron Energy Loss Spectroscopy for Mapping the Photonic Density of States. ACS Photonics, 2017, 4, 1009-1014.	3.2	23
20	All-dielectric metamaterials. Nature Nanotechnology, 2016, 11, 23-36.	15.6	1,556
21	Breakthroughs in Photonics 2014: Relaxed Total Internal Reflection. IEEE Photonics Journal, 2015, 7, 1-5.	1.0	9
22	Photonic skin-depth engineering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1346.	0.9	24
23	Hyperbolic phonon–polaritons. Nature Materials, 2014, 13, 1081-1083.	13.3	145
24	Transparent subdiffraction optics: nanoscale light confinement without metal. Optica, 2014, 1, 96.	4.8	102
25	Strong coupling in hyperbolic metamaterials. Physical Review B, 2014, 90, .	1.1	45
26	Hyperbolic metamaterials: fundamentals and applications. Nano Convergence, 2014, 1, 14.	6.3	427
27	Photonic analog of a van Hove singularity in metamaterials. Physical Review B, 2013, 88, .	1.1	40
28	High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Optics Express, 2013, 21, A96.	1.7	234
29	Collective spontaneous emission and strong coupling in semiconductor hyperbolic metamaterials. , 2013, , .		0
30	Broadband super-Planckian thermal emission from hyperbolic metamaterials. Applied Physics Letters, 2012, 101, .	1.5	298