List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5749538/publications.pdf Version: 2024-02-01

IIN AN WANC

#	Article	IF	CITATIONS
1	Quantitative Determination of Titanium Lattice Defects and Solid-State Reaction Mechanism in Iron-Doped TiO2 Photocatalysts. Journal of Physical Chemistry B, 2001, 105, 9692-9698.	2.6	241
2	Aluminum Local Environment and Defects in the Crystalline Structure of Solâ^'Gel Alumina Catalyst. Journal of Physical Chemistry B, 1999, 103, 299-303.	2.6	223
3	Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods. Catalysis Today, 2001, 68, 21-30.	4.4	123
4	Characterizations of the thermal decomposition of brucite prepared by sol–gel technique for synthesis of nanocrystalline MgO. Materials Letters, 1998, 35, 317-323.	2.6	119
5	Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition. International Journal of Hydrogen Energy, 2010, 35, 3509-3521.	7.1	95
6	Effects of structural defects and acid–basic properties on the activity and selectivity of isopropanol decomposition on nanocrystallite sol–gel alumina catalyst. Journal of Molecular Catalysis A, 1999, 137, 239-252.	4.8	88
7	Characterization of iron-doped titania sol–gel materials. Journal of Materials Chemistry, 2002, 12, 714-718.	6.7	88
8	H2 reduction behaviors and catalytic performance of bimetallic tin-modified platinum catalysts for propane dehydrogenation. Journal of Molecular Catalysis A, 2002, 184, 203-213.	4.8	83
9	BiOBrxI1â~'x/BiOBr heterostructure engineering for efficient molecular oxygen activation. Chemical Engineering Journal, 2019, 356, 34-42.	12.7	75
10	Esterification over rare earth oxide and alumina promoted SO42â^'/ZrO2. Catalysis Today, 2009, 148, 169-173.	4.4	66
11	SO2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium–aluminate spinel sulfur-transfer catalyst. Applied Surface Science, 2000, 161, 406-416.	6.1	62
12	Structural Defects and Acidic and Basic Sites in Solâ~'Gel MgO. Journal of Physical Chemistry B, 1997, 101, 7448-7451.	2.6	60
13	Studies of sol–gel TiO2 and Pt/TiO2 catalysts for NO reduction by CO in an oxygen-rich condition. Applied Surface Science, 2004, 230, 94-105.	6.1	58
14	Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41. Materials Chemistry and Physics, 2006, 97, 236-242.	4.0	58
15	Roles of surface chemistry and structural defects of activated carbons in the oxidative desulfurization of benzothiophenes. Fuel, 2016, 163, 223-231.	6.4	58
16	Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen. Applied Surface Science, 2005, 243, 319-328.	6.1	54
17	Few Layered BiOBr with Expanded Interlayer Spacing and Oxygen Vacancies for Efficient Decomposition of Real Oil Field Produced Wastewater. ACS Sustainable Chemistry and Engineering, 2018, 6, 13739-13746.	6.7	54
18	Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H3PW12O40/Zr-MCM-41 catalysts. Journal of Solid State Chemistry, 2007, 180, 2958-2972.	2.9	53

#	Article	IF	CITATIONS
19	Synthesis and characterization of nanocrystallite MgAl2O4 spinels as catalysts support. Journal of Materials Science Letters, 2000, 19, 1033-1037.	0.5	52
20	New Insights into the Defective Structure and Catalytic Activity of Pd/Ceria. Chemistry of Materials, 2002, 14, 4676-4683.	6.7	51
21	Structural Defects, Lewis Acidity, and Catalysis Properties of Mesostructured WO ₃ /SBA-15 Nanocatalysts. Journal of Physical Chemistry C, 2017, 121, 23988-23999.	3.1	49
22	Cationic and Anionic Vacancies in the Crystalline Phases of Solâ^'Gel Magnesiaâ^'Alumina Catalysts. Chemistry of Materials, 1999, 11, 308-313.	6.7	47
23	Quantitative determination of oxygen defects, surface lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts. Journal of Solid State Chemistry, 2018, 263, 100-114.	2.9	45
24	Influence of Synthesis Methods on Tungsten Dispersion, Structural Deformation, and Surface Acidity in Binary WO3â^'ZrO2System. Journal of Physical Chemistry B, 2005, 109, 22730-22739.	2.6	42
25	Coke deactivation of Pd/H-mordenite catalysts used for C5/C6 hydroisomerization. Applied Catalysis A: General, 2000, 199, 211-220.	4.3	39
26	Dibenzothiophene oxidation in a model diesel fuel using CuO/GC catalysts and H2O2 in the presence of acetic acid under acidic condition. Fuel, 2015, 149, 15-25.	6.4	37
27	Adsorption/desorption of NOx on MnO2/ZrO2 oxides prepared in reverse microemulsions. Catalysis Today, 2009, 148, 75-80.	4.4	35
28	Supercapacitor performance of 3D-graphene/MnO2 foam synthesized via the combination of chemical vapor deposition with hydrothermal method. Applied Physics Letters, 2020, 117, .	3.3	30
29	Oxidative modifications of rice hull-based carbons for dibenzothiophene adsorptive removal. Catalysis Today, 2013, 212, 31-37.	4.4	29
30	Rietveld refinement and activity of CO oxidation over Pd/Ce0.8Zr0.2O2 catalyst prepared via a surfactant-assisted route. Applied Surface Science, 2004, 230, 34-43.	6.1	28
31	Enhancement of Stability by Positive Disruptive Effect on Mn–Fe Charge Transfer in Vacancy-Free Mn–Co Hexacyanoferrate Through a Charge/Discharge Process in Aqueous Na-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 20602-20610.	3.1	28
32	Synthesis and catalytic evaluation of CoMo/SBA-15 catalysts for oxidative removal of dibenzothiophene from a model diesel. Catalysis Communications, 2015, 72, 57-62.	3.3	25
33	Removal of dibenzothiophene in diesel oil by oxidation over a promoted activated carbon catalyst. Kinetics and Catalysis, 2009, 50, 543-549.	1.0	20
34	Effects of calcination temperature and water-washing treatment on n-hexane hydroisomerization behavior of Pt-promoted sulfated zirconia based catalysts. Catalysis Today, 2013, 212, 108-114.	4.4	20
35	Mesostructured CeO2 and Pd/CeO2 nanophases: Templated synthesis, crystalline structure and catalytic properties. Journal of Molecular Catalysis A, 2005, 237, 182-190.	4.8	18
36	WO3 microcrystallites: One of the crucial factors controlling the isomerization activity of Pt/WO3–ZrO2. Catalysis Today, 2011, 166, 67-72.	4.4	16

#	Article	IF	CITATIONS
37	Heteropolyacid grafted Pt/Si-MCM-41 catalyst for C7 skeletal isomerization. Catalysis Communications, 2012, 28, 202-206.	3.3	16
38	Ultrasound-assisted synthesis and catalytic activity of mesostructured FeOx/SBA-15 and FeOx/Zr-SBA-15 catalysts for the oxidative desulfurization of model diesel. Catalysis Today, 2020, 349, 198-209.	4.4	16
39	Structural modifications in Au/Al2O3–CeO2 mixed oxides as a function of Ce4+ content and its effects in the mineralization of the herbicide diuron. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 243, 23-32.	3.9	15
40	Water promotion or inhibition effect on isopropanol decomposition catalyzed with a sol–gel MgO-Al2O3 catalyst. Journal of Molecular Catalysis A, 2006, 247, 222-226.	4.8	14
41	Oxidation/elimination of heterocyclic sulfur compounds in a biphasic system with mesostructured FeOx/Ti-MCM-41 catalysts. Journal of Molecular Catalysis A, 2016, 421, 66-75.	4.8	12
42	One-Pot Synthesis of Ru-Doped ZnO Oxides for Photodegradation of 4-Chlorophenol. International Journal of Photoenergy, 2018, 2018, 1-12.	2.5	12
43	Adsorption performance of activated carbon for methane with low concentration at atmospheric pressure. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 1337-1347.	2.3	12
44	Adsorption of Dibenzothiophene on Transition Metals Loaded Activated Carbon. Advanced Materials Research, 2010, 132, 141-148.	0.3	11
45	One-Pot Synthesis of W-TiO2/SiO2 Catalysts for the Photodegradation of p-Nitrophenol. International Journal of Photoenergy, 2019, 2019, 1-13.	2.5	11
46	Effect of crystallization mode of hydrous zirconia support on the isomerization activity of Pt/WO3–ZrO2. Catalysis Today, 2011, 166, 79-83.	4.4	10
47	A study of surface and inner layer compositions of Mgî—,Feî—,Alî—,O mixed spinel sulfur-transfer catalyst using Auger electron spectroscopy. Materials Letters, 1997, 32, 223-227.	2.6	9
48	On the Role of Calcination Temperature in Pt-SO 4 2â^' /ZrO2â^'Al2O3 Preparation and Catalytic Behaviors During the n-Hexane Hydroisomerization. Catalysis Letters, 2008, 124, 277-283.	2.6	8
49	Characterization of structural and optical properties of the mesoporous Ce-MCM-41 hybrid materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 15621-15631.	2.2	8
50	Isobutane/1-butene Alkylation Performance of Ammonium Fluoride-Modified HUSY Zeolite. Catalysis Letters, 2020, 150, 2996-3006.	2.6	8
51	Comparative Studies of the CoMo/MgO, CoMo/Al ₂ 0 ₃ and CoMo/MgO-MgAl ₂ 0 ₄ Catalysts Prepared by a Urea-Matrix Combustion Method. Advanced Materials Research, 0, 132, 45-54.	0.3	7
52	VO _{<i>x</i>} Core–Shell Catalysts for One-Pot Oxidation and Separation of Refractory Multiaromatic Sulfur Compounds in a Model Diesel. Industrial & Engineering Chemistry Research, 2017, 56, 12080-12091.	3.7	6
53	Dimerization of Isobutene in C4 Mixtures in the Presence of Ethanol Over Acid Ion-Exchange Resin DH-2. Catalysis Letters, 2019, 149, 1277-1285.	2.6	6
54	Ultrasound-Assisted Hydrothermal Synthesis of V2O5/Zr-SBA-15 Catalysts for Production of Ultralow Sulfur Fuel. Catalysts, 2021, 11, 408.	3.5	6

#	Article	IF	CITATIONS
55	Adsorptive Removal of Dibenzothiophene in Diesel Fuel on an Adsorbent from Rice Hull Activated by Phosphoric Acid. Advanced Materials Research, 2010, 132, 133-140.	0.3	5
56	Kinetic and Mechanism Studies on the Photodegradation of Cold-Rolling Emulsion Wastewater by the UV/H ₂ O ₂ Process. Industrial & Engineering Chemistry Research, 2021, 60, 8073-8084.	3.7	5
57	Refinery Oil Fraction Fuels Obtained from Polyethylene Catalytic Cracking Employing Heteropolyacid-MCM-41 Materials. Advanced Materials Research, 0, 132, 236-245.	0.3	4
58	Oxidative Removal of Dibenzothiophene by H ₂ O ₂ over Activated Carbon-Supported Phosphotungstic Acid Catalysts. Advanced Materials Research, 0, 132, 126-132.	0.3	3
59	Roles of oxygen defects and surface acidity of Keggin-type phosphotungstic acid dispersed on SBA-15 catalysts in the oxidation of 4,6-dimethyldibenzothiophene. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 1119-1135.	1.7	3
60	Promoting Role of Amorphous Carbon and Carbon Nanotubes Growth Modes of Methane Decomposition in One-Pot Catalytic Approach. Catalysts, 2021, 11, 1217.	3.5	3
61	Roles of the structural defects and the combined acidity of H ₃ PW ₁₂ O ₄₀ /Zr-MCM-41 catalysts in ultralow sulfur diesel production. New Journal of Chemistry, 2022, 46, 2081-2093.	2.8	2
62	Templated synthesis and catalytic properties of an Rh/ceria-zirconia catalyst. Reaction Kinetics and Catalysis Letters, 2007, 90, 381-387.	0.6	1
63	Au/Ce0.5Zr0.5O2 catalysts for hydrogen production via partial oxidation of methanol. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 167-186.	1.7	1
64	Modified Natural Dolomite and Its Influence on the Production of Glycerol Carbonate: Effects of Structural and Basicity Properties. Materials, 2021, 14, 2358.	2.9	1
65	Preparation and Characterization of Lanthanum Self-Assembled Nano-Films. Advanced Materials Research, 2009, 79-82, 871-874.	0.3	0
66	Synthesis of Si-Based Mesoporous Materials with Different Structural Regularity. Advanced Materials Research, 2010, 132, 38-44.	0.3	0
67	Effect of Hydrothermal Conditions on Isomerization Activity of Pt/SO ₄ ²⁻ -ZrO ₂ . Advanced Materials Research, 2010, 132, 183-191.	0.3	0
68	Yb ₂ O ₃ Promoted Pt-SO ₄ ²⁻ /ZrO ₂ -Al _{2Catalyst in N-Hexane Hydroisomerization. Advanced Materials Research, 0, 132, 174-182.}	gt;O &l8 ;suł	o&g t j3</sub
69	Effect of Comb-Type Copolymers on the Non-Isothermal Crystallization Behavior of Paraffin in Methyl Ethyl Ketone (MEK)–Toluene Dewaxing. Energies, 2022, 15, 3989.	3.1	0