
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5749528/publications.pdf Version: 2024-02-01

MEL-RU CHEN

#	Article	IF	CITATIONS
1	Conserved Herpesvirus Kinases Target the DNA Damage Response Pathway and TIP60 Histone Acetyltransferase to Promote Virus Replication. Cell Host and Microbe, 2011, 10, 390-400.	5.1	148
2	Epstein-Barr Virus BGLF4 Kinase Suppresses the Interferon Regulatory Factor 3 Signaling Pathway. Journal of Virology, 2009, 83, 1856-1869.	1.5	130
3	The ESCRT Machinery Is Recruited by the Viral BFRF1 Protein to the Nucleus-Associated Membrane for the Maturation of Epstein-Barr Virus. PLoS Pathogens, 2012, 8, e1002904.	2.1	110
4	Epstein-Barr Virus BGLF4 Kinase Induces Disassembly of the Nuclear Lamina To Facilitate Virion Production. Journal of Virology, 2008, 82, 11913-11926.	1.5	104
5	A Protein Kinase Activity Associated with Epstein-Barr Virus BGLF4 Phosphorylates the Viral Early Antigen EA-D In Vitro. Journal of Virology, 2000, 74, 3093-3104.	1.5	97
6	NF-κB Signaling Regulates Expression of Epstein-Barr Virus BART MicroRNAs and Long Noncoding RNAs in Nasopharyngeal Carcinoma. Journal of Virology, 2016, 90, 6475-6488.	1.5	73
7	Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks. Nature Communications, 2014, 5, 5811.	5.8	72
8	Epstein-Barr Virus BGLF4 Kinase Induces Premature Chromosome Condensation through Activation of Condensin and Topoisomerase II. Journal of Virology, 2007, 81, 5166-5180.	1.5	69
9	Protein Array Identification of Substrates of the Epstein-Barr Virus Protein Kinase BGLF4. Journal of Virology, 2009, 83, 5219-5231.	1.5	67
10	Escape of herpesviruses from the nucleus. Reviews in Medical Virology, 2010, 20, 214-230.	3.9	66
11	Epstein–Barr Virus, the Immune System, and Associated Diseases. Frontiers in Microbiology, 2011, 2, 5.	1.5	59
12	Detection of Epstein–Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. Journal of General Virology, 2005, 86, 3215-3225.	1.3	58
13	Epstein-Barr Virus BGLF4 Kinase Retards Cellular S-Phase Progression and Induces Chromosomal Abnormality. PLoS ONE, 2012, 7, e39217.	1.1	51
14	Characterization of monoclonal antibodies to the Zta and DNase proteins of epstein-barr virus. Journal of Biomedical Science, 1997, 4, 69-77.	2.6	45
15	Genome-wide transcription program and expression of the Rta responsive gene of Epstein–Barr virus. Virology, 2006, 345, 358-372.	1.1	45
16	Hepatitis C virus NS4A inhibits cap-dependent and the viral IRES-mediated translation through interacting with eukaryotic elongation factor 1A. Journal of Biomedical Science, 2006, 13, 861-874.	2.6	42
17	Role of the TSG101 Gene in Epstein-Barr Virus Late Gene Transcription. Journal of Virology, 2007, 81, 2459-2471.	1.5	42
18	The Ubiquitin Ligase Itch and Ubiquitination Regulate BFRF1-Mediated Nuclear Envelope Modification for Epstein-Barr Virus Maturation. Journal of Virology, 2016, 90, 8994-9007.	1.5	39

#	Article	IF	CITATIONS
19	Epstein-Barr virus-coded miR-BART13 promotes nasopharyngeal carcinoma cell growth and metastasis via targeting of the NKIRAS2/NF-κB pathway. Cancer Letters, 2019, 447, 33-40.	3.2	38
20	Epstein-Barr Virus BGLF4 Kinase Downregulates NF-κB Transactivation through Phosphorylation of Coactivator UXT. Journal of Virology, 2012, 86, 12176-12186.	1.5	37
21	Characterization of the Uracil-DNA Glycosylase Activity of Epstein-Barr Virus BKRF3 and Its Role in Lytic Viral DNA Replication. Journal of Virology, 2007, 81, 1195-1208.	1.5	35
22	Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex. Journal of Virology, 2014, 88, 8883-8899.	1.5	33
23	BGLF4 Kinase Modulates the Structure and Transport Preference of the Nuclear Pore Complex To Facilitate Nuclear Import of Epstein-Barr Virus Lytic Proteins. Journal of Virology, 2015, 89, 1703-1718.	1.5	33
24	Effect of phosphorylation on the transactivation activity of Epstein–Barr virus BMRF1, a major target of the viral BGLF4 kinase. Journal of General Virology, 2008, 89, 884-895.	1.3	31
25	Change in P-glycoprotein and caveolin protein expression in brain striatum capillaries in New Zealand Obese mice with type 2 diabetes. Life Sciences, 2009, 85, 775-781.	2.0	30
26	Regulation of Microtubule Dynamics through Phosphorylation on Stathmin by Epstein-Barr Virus Kinase BGLF4. Journal of Biological Chemistry, 2010, 285, 10053-10063.	1.6	30
27	Epstein-Barr virus LMP2A suppresses MHC class II expression by regulating the B-cell transcription factors E47 and PU.1. Blood, 2015, 125, 2228-2238.	0.6	30
28	Reactivation of Epstein–Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. Journal of General Virology, 2005, 86, 317-322.	1.3	26
29	Epstein-Barr Virus BALF3 Has Nuclease Activity and Mediates Mature Virion Production during the Lytic Cycle. Journal of Virology, 2014, 88, 4962-4975.	1.5	25
30	Hypoxia-Mediated Down-Regulation of OCTN2 and PPARα Expression in Human Placentas and in BeWo Cells. Molecular Pharmaceutics, 2011, 8, 117-125.	2.3	24
31	Epstein–Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. Journal of General Virology, 2012, 93, 139-149.	1.3	24
32	Epstein–Barr virus nuclear antigen 1 is a DNA-binding protein with strong RNA-binding activity. Journal of General Virology, 2004, 85, 2755-2765.	1.3	23
33	Epstein-Barr Virus Protein Kinase BGLF4 Targets the Nucleus through Interaction with Nucleoporins. Journal of Virology, 2012, 86, 8072-8085.	1.5	23
34	Autocrine CCL3 and CCL4 Induced by the Oncoprotein LMP1 Promote Epstein-Barr Virus-Triggered B Cell Proliferation. Journal of Virology, 2013, 87, 9041-9052.	1.5	23
35	Regulation of EBV LMP1-triggered EphA4 downregulation in EBV-associated B lymphoma and its impact on patients' survival. Blood, 2016, 128, 1578-1589.	0.6	23
36	Use of bacterially expressed EBNA-1 protein cloned from a nasopharyngeal carcinoma (NPC) biopsy as a screening test for NPC patients. Journal of Medical Virology, 2001, 64, 51-57.	2.5	22

#	Article	IF	CITATIONS
37	OmpA Is the Critical Component for Escherichia coli Invasion-Induced Astrocyte Activation. Journal of Neuropathology and Experimental Neurology, 2009, 68, 677-690.	0.9	22
38	Delineation of a 16 Amino Acid Sequence That Forms a Core DNA Recognition Motif in the Epstein-Barr Virus EBNA-1 Protein. Virology, 1994, 205, 486-495.	1.1	20
39	EBNA-1 sequence variations reflect active EBV replication and disease status or quiescentlatency in lymphocytes. Journal of Medical Virology, 2003, 69, 417-425.	2.5	20
40	Physical association between the EBV protein EBNA-1 and P32/TAP/hyaluronectin. Journal of Biomedical Science, 1998, 5, 173-179.	2.6	19
41	Maintenance of Epstein-Barr Virus Latent Status by a Novel Mechanism, Latent Membrane Protein 1-Induced Interleukin-32, via the Protein Kinase Cl´Pathway. Journal of Virology, 2015, 89, 5968-5980.	1.5	19
42	Biotic vs abiotic drivers of seedling persistence in a tropical karst forest. Journal of Vegetation Science, 2017, 28, 206-217.	1.1	19
43	Glycogen synthase kinase 3 negatively regulates IFN regulatory factor 3 transactivation through phosphorylation at its linker region. Innate Immunity, 2014, 20, 78-87.	1.1	16
44	The SWI/SNF Chromatin Regulator BRG1 Modulates the Transcriptional Regulatory Activity of the Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1. Journal of Virology, 2017, 91, .	1.5	16
45	Novel expression and regulation of TIMP-1 in Epstein Barr virus-infected cells and its impact on cell survival. Virology, 2015, 481, 24-33.	1.1	13
46	The Novel Nuclear Targeting and BFRF1-Interacting Domains of BFLF2 Are Essential for Efficient Epstein-Barr Virus Virion Release. Journal of Virology, 2020, 94, .	1.5	13
47	Conquering the Nuclear Envelope Barriers by EBV Lytic Replication. Viruses, 2021, 13, 702.	1.5	13
48	Xeroderma pigmentosum C is involved in Epstein–Barr virus DNA replication. Journal of General Virology, 2007, 88, 3234-3243.	1.3	12
49	Involvement of Recepteur d'Origine Nantais Receptor Tyrosine Kinase in Epstein-Barr Virus-Associated Nasopharyngeal Carcinoma and Its Metastasis. American Journal of Pathology, 2012, 181, 1773-1781.	1.9	12
50	Nuclear Export Signal-Interacting Protein Forms Complexes with Lamin A/C-Nups To Mediate the CRM1-Independent Nuclear Export of Large Hepatitis Delta Antigen. Journal of Virology, 2013, 87, 1596-1604.	1.5	10
51	Dysregulation of Dual-Specificity Phosphatases by Epstein-Barr Virus LMP1 and Its Impact on Lymphoblastoid Cell Line Survival. Journal of Virology, 2020, 94, .	1.5	10
52	Lytic replication of Epstein–Barr virus. Future Virology, 2006, 1, 435-446.	0.9	7
53	Characterization of Epstein-Barr virus BGLF4 kinase expression control at the transcriptional and translational levels. Journal of General Virology, 2010, 91, 2186-2196.	1.3	7
54	A novel EBNA-1 tag system for high level expression and efficient detection of fusion proteins in vitro and in vivo. Journal of Virological Methods, 2000, 85, 35-41.	1.0	6

#	Article	IF	CITATIONS
55	Knockdown of IQCAP-1 Enhances Tight Junctions and Prevents <i>P. aeruginosa</i> Invasion of Human Corneal Epithelial Cells. Ocular Immunology and Inflammation, 2020, 28, 876-883.	1.0	3
56	BCL10GFP fusion protein as a substrate for analysis of determinants required for Mucosa-Associated Lymphoid Tissue 1 (MALT1)-mediated cleavage. Journal of Biomedical Science, 2012, 19, 85.	2.6	2
57	Autocleavage of the paracaspase MALT1 at Arg-781 attenuates NF-κB signaling and regulates the growth of activated B-cell like diffuse large B-cell lymphoma cells. PLoS ONE, 2018, 13, e0199779.	1.1	2
58	Epstein-Barr Virus BGLF4 Kinase Induces Premature Chromosome Condensation through Activation of Condensin and Topoisomerase II. Journal of Virology, 2008, 82, 3162-3162.	1.5	1