
Chuchu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/574951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 2021, 33, e2002264.	11.1	239
2	Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chemical Engineering Journal, 2020, 400, 125876.	6.6	107
3	Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochimica Acta, 2015, 182, 264-271.	2.6	99
4	Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy, 2021, 87, 106146.	8.2	77
5	Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose, 2014, 21, 1505-1515.	2.4	75
6	Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors. Electrochimica Acta, 2018, 269, 11-20.	2.6	75
7	Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Separation and Purification Technology, 2021, 274, 119120.	3.9	74
8	Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline. Materials Letters, 2015, 155, 78-81.	1.3	72
9	Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Composites Part B: Engineering, 2018, 153, 277-284.	5.9	72
10	Cotton cellulose nanofiber-reinforced high density polyethylene composites prepared with two different pretreatment methods. Industrial Crops and Products, 2014, 59, 318-328.	2.5	69
11	Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells. Materials & Design, 2014, 56, 1049-1056.	5.1	59
12	Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Composites Science and Technology, 2016, 132, 31-37.	3.8	57
13	Assessing air pollution abatement co-benefits of energy efficiency improvement in cement industry: A city level analysis. Journal of Cleaner Production, 2018, 185, 761-771.	4.6	53
14	Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties. Materials and Design, 2015, 85, 54-59.	3.3	52
15	Multifunctional Wet-Spun Filaments through Robust Nanocellulose Networks Wrapping to Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 42808-42817.	4.0	48
16	Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose, 2015, 22, 2543-2550.	2.4	47
17	Highly conductive nanocomposites based on cellulose nanofiber networks via NaOH treatments. Composites Science and Technology, 2018, 156, 103-108.	3.8	47
18	Cellulose Nanofiber/Carbon Nanotube Conductive Nano-Network as a Reinforcement Template for Polydimethylsiloxane Nanocomposite. Polymers, 2018, 10, 1000.	2.0	47

Снисни Снем

#	Article	IF	CITATIONS
19	Insect Cuticle-Mimetic Hydrogels with High Mechanical Properties Achieved via the Combination of Chitin Nanofiber and Gelatin. Journal of Agricultural and Food Chemistry, 2019, 67, 5571-5578.	2.4	47
20	Thermal Properties of Wood-Plastic Composites with Different Compositions. Materials, 2019, 12, 881.	1.3	45
21	Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose, 2019, 26, 8843-8851.	2.4	43
22	Bioinspired hydrogels: Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohydrate Polymers, 2019, 207, 411-417.	5.1	43
23	Isolation and Properties of Cellulose Nanofibrils from Coconut Palm Petioles by Different Mechanical Process. PLoS ONE, 2015, 10, e0122123.	1.1	40
24	High strength gelatin-based nanocomposites reinforced by surface-deacetylated chitin nanofiber networks. Carbohydrate Polymers, 2018, 195, 387-392.	5.1	40
25	Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrasonics Sonochemistry, 2020, 64, 104783.	3.8	38
26	Tensile strength of windmill palm (Trachycarpus fortunei) fiber bundles and its structural implications. Journal of Materials Science, 2012, 47, 949-959.	1.7	37
27	Reinforcement of cellulose nanofibers in polyacrylamide gels. Cellulose, 2017, 24, 5487-5493.	2.4	37
28	Surface modification of orthopedic implants by optimized fluorine-substituted hydroxyapatite coating: Enhancing corrosion behavior and cell function. Ceramics International, 2020, 46, 2139-2146.	2.3	37
29	High-performance nanocomposite films: reinforced with chitosan nanofiber extracted from prawn shells. Journal of Materials Science, 2014, 49, 1215-1221.	1.7	35
30	Gradient Diffusion Anisotropic Carboxymethyl Cellulose Hydrogels for Strain Sensors. Biomacromolecules, 2021, 22, 5033-5041.	2.6	35
31	A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydrate Polymers, 2015, 134, 309-313.	5.1	34
32	Highly filled bamboo charcoal powder reinforced ultra-high molecular weight polyethylene. Materials Letters, 2014, 122, 121-124.	1.3	30
33	Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing. Materials and Design, 2021, 198, 109314.	3.3	30
34	Cellulose-reinforced bioglass composite as flexible bioactive bandage to enhance bone healing. Ceramics International, 2021, 47, 416-423.	2.3	29
35	Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose, 2014, 21, 3339-3346.	2.4	27
36	Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Advances, 2016, 6, 86744-86751.	1.7	27

Снисни Снем

#	Article	IF	CITATIONS
37	Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose, 2018, 25, 5089-5097.	2.4	27
38	Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites. Composites Part B: Engineering, 2020, 196, 108120.	5.9	27
39	Mildly processed chitin used in one-component drinking straws and single use materials: Strength, biodegradability and recyclability. Chemical Engineering Journal, 2022, 442, 136173.	6.6	27
40	Excellent rheological performance and impact toughness of cellulose nanofibers/PLA/ionomer composite. RSC Advances, 2017, 7, 28889-28897.	1.7	24
41	Core–Shell Structured Cellulose Nanofibers/Graphene@Polypyrrole Microfibers for All‣olid‣tate Wearable Supercapacitors with Enhanced Electrochemical Performance. Macromolecular Materials and Engineering, 2020, 305, 1900854.	1.7	24
42	A multicomponent interconnected composite paper for triple-mode sensors and flexible micro-supercapacitors. Journal of Materials Chemistry A, 2020, 8, 24620-24634.	5.2	23
43	A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. Journal of Materials Chemistry A, 2020, 8, 11695-11711.	5.2	23
44	Comparative Study on Properties of Polylactic Acid Nanocomposites with Cellulose and Chitin Nanofibers Extracted from Different Raw Materials. Journal of Nanomaterials, 2017, 2017, 1-11.	1.5	20
45	Toward Strong and Tough Wood-Based Hydrogels for Sensors. Biomacromolecules, 2021, 22, 5204-5213.	2.6	20
46	Homogeneous dispersion of chitin nanofibers in polylactic acid with different pretreatment methods. Cellulose, 2017, 24, 1705-1715.	2.4	19
47	Electrically conductive charcoal powder/ultrahigh molecular weight polyethylene composites. Materials Letters, 2014, 137, 409-412.	1.3	16
48	Preparation and properties of wood plastic composite reinforced by ultralong cellulose nanofibers. Polymer Composites, 2016, 37, 1206-1215.	2.3	16
49	Acoustic Emission-Based Study to Characterize the Crack Initiation Point of Wood Fiber/HDPE Composites. Polymers, 2019, 11, 701.	2.0	16
50	Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties. Cellulose, 2018, 25, 5063-5070.	2.4	15
51	A Comparative Study on the Characterization of Nanofibers with Cellulose I, I/II, and II Polymorphs from Wood. Polymers, 2019, 11, 153.	2.0	15
52	Electrodes based on cellulose nanofibers/carbon nanotubes networks, polyaniline nanowires and carbon cloth for supercapacitors. Materials Research Express, 2019, 6, 035008.	0.8	15
53	Mechanical, electrical, and thermal properties of highly filled bamboo charcoal/ultraâ€high molecular weight polyethylene composites. Polymer Composites, 2018, 39, E1858.	2.3	14
54	Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood. Cellulose, 2018, 25, 7003-7015.	2.4	14

Снисни Снем

#	Article	IF	CITATIONS
55	Measurement of the elastic parameters of densified balsam fir wood in the radial-tangential plane using a digital image correlation (DIC) method. Journal of Materials Science, 2013, 48, 7728-7735.	1.7	13
56	Size effect of charcoal particles on the properties of bamboo charcoal/ultraâ€high molecular weight polyethylene composites. Journal of Applied Polymer Science, 2017, 134, 45530.	1.3	13
57	Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables. Chemical Engineering Journal, 2021, 416, 128981.	6.6	13
58	Analysis and Identification of the Mechanism of Damage and Fracture of High-Filled Wood Fiber/Recycled High-Density Polyethylene Composites. Polymers, 2019, 11, 170.	2.0	12
59	Synthesis of chitin nanofibers, MWCNTs and MnO2 nanoflakes 3D porous network flexible gel-film for high supercapacitive performance electrodes. Applied Surface Science, 2017, 398, 33-42.	3.1	11
60	Exploratory study on fatigue behaviour of laterally loaded, nailed timber joints, based on a dissipated energy criterion. Holzforschung, 2012, 66, 863-869.	0.9	8
61	Polypyrroleâ€decorated, milled carbon fibersâ€inserted chitin nanofibers/multiwalled carbon nanotubes flexible freeâ€standing film for supercapacitors. Polymer Composites, 2019, 40, 4311-4320.	2.3	8
62	Interface Reinforcement of Pulp Fiber Based ABS Composite with Hydrogen Bonding Initiated Interlinked Structure via Alkaline Oxidation and tert-Butyl Grafting on Cellulose. Polymers, 2019, 11, 2048.	2.0	6
63	Preparation and characterization of activated carbon/ultraâ€high molecular weight polyethylene composites. Polymer Composites, 2021, 42, 2728-2736.	2.3	6
64	High mechanical properties of micro fibrillated cellulose/HDPE composites prepared with two different methods. Cellulose, 2021, 28, 5449.	2.4	6
65	An Ultraâ€ S trong, Water Stable and Antimicrobial Chitosan Film with Interdigitated Bouligand Structure. Advanced Sustainable Systems, 2022, 6, .	2.7	6
66	OPTICALLY TRANSPARENT BIOCOMPOSITES: POLYMETHYLMETHACRYLATE REINFORCED WITH HIGH-PERFORMANCE CHITIN NANOFIBERS. BioResources, 2012, 7, .	0.5	5
67	Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS Applied Materials & Interfaces, 2022, 14, 16809-16819.	4.0	5
68	Strong, Water-Resistant, and Ionic Conductive All-Chitosan Film with a Self-Locking Structure. ACS Applied Materials & amp; Interfaces, 2022, 14, 23797-23807.	4.0	5
69	Characterization and evaluation of the adsorption potential of chitosan-impregnated cellulose nanofiber multi-walled carbon nanotube aerogel for copper ions. New Journal of Chemistry, 2022, 46, 3156-3167.	1.4	4
70	Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems. Journal of Nuclear Materials, 2016, 480, 216-222.	1.3	3
71	Bacterial Cellulose: The Nano-Scalar Cellulose Morphology for the Material of Transparent Regenerated Membrane. Advanced Materials Research, 2012, 586, 30-38.	0.3	1