Thomas J Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5748817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and characterization of surface molecular assemblies for the preparation of solar fuels. Chemical Physics Reviews, 2022, 3, .	5.7	5
2	A Semiconductorâ€Mediatorâ€Catalyst Artificial Photosynthetic System for Photoelectrochemical Water Oxidation. Chemistry - A European Journal, 2022, 28, e202102630.	3.3	4
3	Water oxidation by a noble metal-free photoanode modified with an organic dye and a molecular cobalt catalyst. Journal of Materials Chemistry A, 2022, 10, 9121-9128.	10.3	6
4	Selective CO ₂ Reduction to Formate on a Zn-Based Electrocatalyst Promoted by Tellurium. Chemistry of Materials, 2022, 34, 6036-6047.	6.7	15
5	Application of Atomic Layer Deposition in Dye-Sensitized Photoelectrosynthesis Cells. Trends in Chemistry, 2021, 3, 59-71.	8.5	7
6	Dye-Sensitized Nonstoichiometric Strontium Titanate Core–Shell Photocathodes for Photoelectrosynthesis Applications. ACS Applied Materials & Interfaces, 2021, 13, 15261-15269.	8.0	5
7	Ruthenium Dyes, Charge Transfer, and the Sun. ECS Meeting Abstracts, 2021, MA2021-01, 1812-1812.	0.0	0
8	Influence of Surface and Structural Variations in Donor–Acceptor–Donor Sensitizers on Photoelectrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 47499-47510.	8.0	3
9	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	2.6	44
10	Photodriven water oxidation initiated by a surface bound chromophore-donor-catalyst assembly. Chemical Science, 2021, 12, 14441-14450.	7.4	16
11	Henry Taube. 30 November 1915—16 November 2005. Biographical Memoirs of Fellows of the Royal Society, 2021, 70, 409-418.	0.1	0
12	Heterointerface Engineering of Ni ₂ P–Co ₂ P Nanoframes for Efficient Water Splitting. Chemistry of Materials, 2021, 33, 9165-9173.	6.7	53
13	Hybrid Photoelectrochemical Water Splitting Systems: From Interface Design to System Assembly. Advanced Energy Materials, 2020, 10, 1900399.	19.5	152
14	A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12564-12571.	7.1	32
15	CO ₂ Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Accounts of Chemical Research, 2020, 53, 255-264.	15.6	391
16	CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ACS Catalysis, 2020, 10, 412-419.	11.2	361
17	A Novel Bactericidal Drug Effective Against Gram-Positive and Gram-Negative Pathogenic Bacteria: Easy as AB569. DNA and Cell Biology, 2020, 39, 1473-1477.	1.9	1
18	Stabilization of a molecular water oxidation catalyst on a dyeâ^'sensitized photoanode by aÂpyridyl anchor. Nature Communications, 2020, 11, 4610.	12.8	38

#	Article	IF	CITATIONS
19	A molecular tandem cell for efficient solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13256-13260.	7.1	28
20	Chemical approaches to artificial photosynthesis: A molecular, dye-sensitized photoanode for O2 production prepared by layer-by-layer self-assembly. Journal of Chemical Physics, 2020, 152, 244706.	3.0	6
21	Ultrafast Relaxations in Ruthenium Polypyridyl Chromophores Determined by Stochastic Kinetics Simulations. Journal of Physical Chemistry B, 2020, 124, 5971-5985.	2.6	13
22	AB569, a nontoxic chemical tandem that kills major human pathogenic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4921-4930.	7.1	6
23	Electron-Withdrawing Boron Dipyrromethene Dyes As Visible Light Absorber/Sensitizers on Semiconductor Oxide Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 7768-7776.	8.0	23
24	Excitation energy-dependent photocurrent switching in a single-molecule photodiode. Proceedings of the United States of America, 2019, 116, 16198-16203.	7.1	10
25	Self-Assembled Chromophore–Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell. Journal of Physical Chemistry C, 2019, 123, 30039-30045.	3.1	22
26	Stable Molecular Photocathode for Solar-Driven CO ₂ Reduction in Aqueous Solutions. ACS Energy Letters, 2019, 4, 629-636.	17.4	54
27	A Silicon-Based Heterojunction Integrated with a Molecular Excited State in a Water-Splitting Tandem Cell. Journal of the American Chemical Society, 2019, 141, 10390-10398.	13.7	34
28	A strategy for stabilizing the catalyst Co ₄ O ₄ in a metal–organic framework. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13719-13720.	7.1	3
29	Electrocatalytic CO ₂ Reduction with a Ruthenium Catalyst in Solution and on Nanocrystalline TiO ₂ . ChemSusChem, 2019, 12, 2402-2408.	6.8	37
30	Crossing the bridge from molecular catalysis to a heterogenous electrode in electrocatalytic water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11153-11158.	7.1	17
31	Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II. Journal of the American Chemical Society, 2019, 141, 7926-7933.	13.7	55
32	Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nature Energy, 2019, 4, 290-299.	39.5	149
33	A donor-chromophore-catalyst assembly for solar CO ₂ reduction. Chemical Science, 2019, 10, 4436-4444.	7.4	23
34	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Mesoporous TiO ₂ Electrodes: Surface Reductive Electropolymerization and Silane Chemistry. ACS Central Science, 2019, 5, 506-514.	11.3	15
35	Light-driven water oxidation by a dye-sensitized photoanode with a chromophore/catalyst assembly on a mesoporous double-shell electrode. Journal of Chemical Physics, 2019, 150, 041727.	3.0	5
36	Homogeneous catalysis for the nitrogen fuel cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2794-2795.	7.1	10

#	Article	IF	CITATIONS
37	Steering CO ₂ electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26353-26358.	7.1	55
38	Stable Molecular Surface Modification of Nanostructured, Mesoporous Metal Oxide Photoanodes by Silane and Click Chemistry. ACS Applied Materials & Interfaces, 2019, 11, 4560-4567.	8.0	18
39	Simultaneous Electrosynthesis of Syngas and an Aldehyde from CO ₂ and an Alcohol by Molecular Electrocatalysis. ACS Applied Energy Materials, 2019, 2, 97-101.	5.1	41
40	Charge Transfer from Upconverting Nanocrystals to Semiconducting Electrodes: Optimizing Thermodynamic Outputs by Electronic Energy Transfer. Journal of the American Chemical Society, 2019, 141, 463-471.	13.7	19
41	Lightâ€Driven Water Splitting Mediated by Photogenerated Bromine. Angewandte Chemie, 2018, 130, 3507-3511.	2.0	11
42	Lightâ€Driven Water Splitting Mediated by Photogenerated Bromine. Angewandte Chemie - International Edition, 2018, 57, 3449-3453.	13.8	31
43	CO ₂ reduction to acetate in mixtures of ultrasmall (Cu) _{<i>n</i>} ,(Ag) _{<i>m</i>} bimetallic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 278-283.	7.1	87
44	A High-Valent Metal-Oxo Species Produced by Photoinduced One-Electron, Two-Proton Transfer Reactivity. Inorganic Chemistry, 2018, 57, 486-494.	4.0	28
45	Synthesis and Photophysical Properties of a Covalently Linked Porphyrin Chromophore–Ru(II) Water Oxidation Catalyst Assembly on SnO ₂ Electrodes. Journal of Physical Chemistry C, 2018, 122, 13455-13461.	3.1	11
46	Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore. Energy and Environmental Science, 2018, 11, 447-455.	30.8	23
47	Photocathode Chromophore–Catalyst Assembly via Layer-By-Layer Deposition of a Low Band-Gap Isoindigo Conjugated Polyelectrolyte. ACS Applied Energy Materials, 2018, 1, 62-67.	5.1	12
48	Controlling Vertical and Lateral Electron Migration Using a Bifunctional Chromophore Assembly in Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2018, 140, 6493-6500.	13.7	48
49	Light-Driven Water Splitting in the Dye-Sensitized Photoelectrosynthesis Cell. Green Chemistry and Sustainable Technology, 2018, , 229-257.	0.7	6
50	Interfacial Deposition of Ru(II) Bipyridine-Dicarboxylate Complexes by Ligand Substitution for Applications in Water Oxidation Catalysis. Journal of the American Chemical Society, 2018, 140, 719-726.	13.7	72
51	Proton-Coupled Electron Transfer in the Oxidation of Guanosine Monophosphate by Ru(bpy) ₃ ³⁺ . Journal of Physical Chemistry C, 2018, 122, 24830-24837.	3.1	1
52	A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation. Journal of the American Chemical Society, 2018, 140, 15062-15069.	13.7	29
53	Catalytic Interconversion of the Quinone/Hydroquinone Couple by a Surface-Bound Os(III/II) Polypyridyl Couple. Journal of Physical Chemistry C, 2018, 122, 16189-16194.	3.1	0
54	Visible-Light-Driven Photocatalytic Water Oxidation by a π-Conjugated Donor–Acceptor–Donor Chromophore/Catalyst Assembly. ACS Energy Letters, 2018, 3, 2114-2119.	17.4	30

#	Article	IF	CITATIONS
55	Stabilized photoanodes for water oxidation by integration of organic dyes, water oxidation catalysts, and electron-transfer mediators. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8523-8528.	7.1	37
56	Completing a Charge Transport Chain for Artificial Photosynthesis. Journal of the American Chemical Society, 2018, 140, 9823-9826.	13.7	20
57	Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 13017-13026.	3.1	10
58	Fundamental Factors Impacting the Stability of Phosphonate-Derivatized Ruthenium Polypyridyl Sensitizers Adsorbed on Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 22821-22833.	8.0	17
59	The role of layer-by-layer, compact TiO ₂ films in dye-sensitized photoelectrosynthesis cells. Sustainable Energy and Fuels, 2017, 1, 112-118.	4.9	11
60	Generation of Long-Lived Redox Equivalents in Self-Assembled Bilayer Structures on Metal Oxide Electrodes. Journal of Physical Chemistry C, 2017, 121, 5882-5890.	3.1	24
61	Inner Layer Control of Performance in a Dye-Sensitized Photoelectrosynthesis Cell. ACS Applied Materials & Interfaces, 2017, 9, 33533-33538.	8.0	16
62	All-in-One Derivatized Tandem p ⁺ n-Silicon–SnO ₂ /TiO ₂ Water Splitting Photoelectrochemical Cell. Nano Letters, 2017, 17, 2440-2446.	9.1	53
63	Interfacial Dynamics within an Organic Chromophore-Based Water Oxidation Molecular Assembly. ACS Applied Materials & Interfaces, 2017, 9, 16651-16659.	8.0	5
64	Fluoropolymer‣tabilized Chromophore–Catalyst Assemblies in Aqueous Buffer Solutions for Waterâ€Oxidation Catalysis. ChemSusChem, 2017, 10, 2380-2384.	6.8	14
65	Single-Site, Heterogeneous Electrocatalytic Reduction of CO ₂ in Water as the Solvent. ACS Energy Letters, 2017, 2, 1395-1399.	17.4	57
66	Polymer Chromophore-Catalyst Assembly for Solar Fuel Generation. ACS Applied Materials & Interfaces, 2017, 9, 19529-19534.	8.0	31
67	[Ru(bpy)3]2+â^— revisited. Is it localized or delocalized? How does it decay?. Coordination Chemistry Reviews, 2017, 345, 86-107.	18.8	67
68	Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore–Catalyst Assembly. ACS Energy Letters, 2017, 2, 124-128.	17.4	75
69	Dye-Sensitized Hydrobromic Acid Splitting for Hydrogen Solar Fuel Production. Journal of the American Chemical Society, 2017, 139, 15612-15615.	13.7	67
70	Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores. Journal of the American Chemical Society, 2017, 139, 16248-16255.	13.7	52
71	Chromophore-Catalyst Assembly for Water Oxidation Prepared by Atomic Layer Deposition. ACS Applied Materials & amp; Interfaces, 2017, 9, 39018-39026.	8.0	32
72	Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9809-9813.	7.1	23

#	Article	IF	CITATIONS
73	Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting. Journal of Physical Chemistry Letters, 2017, 8, 4374-4379.	4.6	47
74	Mechanisms of molecular water oxidation in solution and on oxide surfaces. Chemical Society Reviews, 2017, 46, 6148-6169.	38.1	160
75	Enabling Efficient Creation of Long-Lived Charge-Separation on Dye-Sensitized NiO Photocathodes. ACS Applied Materials & Interfaces, 2017, 9, 26786-26796.	8.0	45
76	Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition. Journal of the American Chemical Society, 2017, 139, 14518-14525.	13.7	55
77	Oxidation of alkyl benzenes by a flavin photooxidation catalyst on nanostructured metal-oxide films. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9279-9283.	7.1	36
78	Heterostructured Arrays of Ni _{<i>x</i>} P/S/Se Nanosheets on Co _{<i>x</i>} P/S/Se Nanowires for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 41347-41353.	8.0	53
79	Ultrafast Recombination Dynamics in Dye-Sensitized SnO ₂ /TiO ₂ Core/Shell Films. Journal of Physical Chemistry Letters, 2016, 7, 5297-5301.	4.6	41
80	A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water. Journal of the American Chemical Society, 2016, 138, 16745-16753.	13.7	100
81	Efficient Light-Driven Oxidation of Alcohols Using an Organic Chromophore–Catalyst Assembly Anchored to TiO ₂ . ACS Applied Materials & Interfaces, 2016, 8, 9125-9133.	8.0	34
82	Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes. Journal of Physical Chemistry A, 2016, 120, 1845-1852.	2.5	8
83	Proton-Coupled Electron Transfer Reduction of a Quinone by an Oxide-Bound Riboflavin Derivative. Journal of Physical Chemistry C, 2016, 120, 23984-23988.	3.1	16
84	The University of North Carolina Energy Frontier Research Center: Center for Solar Fuels. ACS Energy Letters, 2016, 1, 872-874.	17.4	1
85	Direct observation of light-driven, concerted electron–proton transfer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11106-11109.	7.1	27
86	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	13.7	317
87	Two Electrode Collector–Generator Method for the Detection of Electrochemically or Photoelectrochemically Produced O ₂ . Analytical Chemistry, 2016, 88, 7076-7082.	6.5	67
88	Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion. Nature Chemistry, 2016, 8, 845-852.	13.6	84
89	Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies. ACS Energy Letters, 2016, 1, 339-343.	17.4	40
90	Evaluation of Chromophore and Assembly Design in Light-Driven Water Splitting with a Molecular Water Oxidation Catalyst. ACS Energy Letters, 2016, 1, 231-236.	17.4	62

#	Article	IF	CITATIONS
91	Phosphonate-Derivatized Porphyrins for Photoelectrochemical Applications. ACS Applied Materials & Interfaces, 2016, 8, 3853-3860.	8.0	29
92	Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO ₂ . Journal of the American Chemical Society, 2016, 138, 4426-4438.	13.7	84
93	Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. ACS Applied Materials & Interfaces, 2016, 8, 4754-4761.	8.0	71
94	Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L) ₂ complex. Dalton Transactions, 2016, 45, 6324-6328.	3.3	11
95	Analysis of Homogeneous Water Oxidation Catalysis with Collector–Generator Cells. Inorganic Chemistry, 2016, 55, 512-517.	4.0	16
96	Cu(II) Aliphatic Diamine Complexes for Both Heterogeneous and Homogeneous Water Oxidation Catalysis in Basic and Neutral Solutions. ACS Catalysis, 2016, 6, 77-83.	11.2	90
97	An aqueous, organic dye derivatized SnO ₂ /TiO ₂ core/shell photoanode. Journal of Materials Chemistry A, 2016, 4, 2969-2975.	10.3	89
98	Electrochemical Instability of Phosphonate-Derivatized, Ruthenium(III) Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 9554-9562.	8.0	72
99	Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15809-15814.	7.1	140
100	High Surface Area Antimony-Doped Tin Oxide Electrodes Templated by Graft Copolymerization. Applications in Electrochemical and Photoelectrochemical Catalysis. ACS Applied Materials & Interfaces, 2015, 7, 25121-25128.	8.0	22
101	Phase Behavior and Electrochemical Characterization of Blends of Perfluoropolyether, Poly(ethylene) Tj ETQq1 1	0.784314 6.7	rgBT /Overlo
102	Copper as a Robust and Transparent Electrocatalyst for Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 2073-2078.	13.8	209
103	Ultrafast Dynamics in Multifunctional Ru(II)-Loaded Polymers for Solar Energy Conversion. Accounts of Chemical Research, 2015, 48, 818-827.	15.6	35
104	Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer. Journal of Physical Chemistry B, 2015, 119, 7698-7711.	2.6	36
105	Electrocatalytic Reduction of Carbon Dioxide: Let the Molecules Do the Work. Topics in Catalysis, 2015, 58, 30-45.	2.8	85
106	Electroâ€assembly of a Chromophore–Catalyst Bilayer for Water Oxidation and Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 4778-4781.	13.8	88
107	Light-Driven Water Splitting with a Molecular Electroassembly-Based Core/Shell Photoanode. Journal of Physical Chemistry Letters, 2015, 6, 3213-3217.	4.6	94
108	Visible Photoelectrochemical Water Splitting Based on a Ru(II) Polypyridyl Chromophore and Iridium Oxide Nanoparticle Catalyst. Journal of Physical Chemistry C, 2015, 119, 17023-17027.	3.1	35

#	Article	IF	CITATIONS
109	Electron Transfer Mediator Effects in the Oxidative Activation of a Ruthenium Dicarboxylate Water Oxidation Catalyst. ACS Catalysis, 2015, 5, 4404-4409.	11.2	59
110	Visible photoelectrochemical water splitting into H ₂ and O ₂ in a dye-sensitized photoelectrosynthesis cell. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5899-5902.	7.1	136
111	Concerted Electron–Proton Transfer (EPT) in the Oxidation of Cysteine. Journal of Physical Chemistry C, 2015, 119, 7028-7038.	3.1	30
112	Polypyridyl Ru(<scp>ii</scp>)-derivatized polypropylacrylate polymer with a terminal water oxidation catalyst. Application of reversible addition–fragmentation chain transfer polymerization. Dalton Transactions, 2015, 44, 8640-8648.	3.3	14
113	A Half-Reaction Alternative to Water Oxidation: Chloride Oxidation to Chlorine Catalyzed by Silver Ion. Journal of the American Chemical Society, 2015, 137, 3193-3196.	13.7	83
114	Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4935-4940.	7.1	124
115	Electrochemical oxidation of ²⁴³ Am(III) in nitric acid by a terpyridyl-derivatized electrode. Science, 2015, 350, 652-655.	12.6	61
116	Electron Transfer Mediator Effects in Water Oxidation Catalysis by Solution and Surface-Bound Ruthenium Bpy-Dicarboxylate Complexes. Journal of Physical Chemistry C, 2015, 119, 25420-25428.	3.1	33
117	Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews, 2015, 115, 13006-13049.	47.7	412
118	Bias-Dependent Oxidative or Reductive Quenching of a Molecular Excited-State Assembly Bound to a Transparent Conductive Oxide. Journal of Physical Chemistry C, 2015, 119, 25180-25187.	3.1	11
119	Artificial photosynthesis: Where are we now? Where can we go?. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 32-45.	11.6	158
120	Ultrafast, Light-Induced Electron Transfer in a Perylene Diimide Chromophore-Donor Assembly on TiO ₂ . Journal of Physical Chemistry Letters, 2015, 6, 4736-4742.	4.6	20
121	Varying the Electronic Structure of Surface-Bound Ruthenium(II) Polypyridyl Complexes. Inorganic Chemistry, 2015, 54, 460-469.	4.0	56
122	Polyethylenimine-Enhanced Electrocatalytic Reduction of CO ₂ to Formate at Nitrogen-Doped Carbon Nanomaterials. Journal of the American Chemical Society, 2014, 136, 7845-7848.	13.7	591
123	Controlling Ground and Excited State Properties through Ligand Changes in Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 2014, 53, 5637-5646.	4.0	53
124	Driving Force Dependent, Photoinduced Electron Transfer at Degenerately Doped, Optically Transparent Semiconductor Nanoparticle Interfaces. Journal of the American Chemical Society, 2014, 136, 15869-15872.	13.7	43
125	Photophysical Characterization of a Chromophore/Water Oxidation Catalyst Containing a Layer-by-Layer Assembly on Nanocrystalline TiO ₂ Using Ultrafast Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 10301-10308.	2.5	45
126	Chloride-assisted catalytic water oxidation. Chemical Communications, 2014, 50, 8053.	4.1	30

#	Article	IF	CITATIONS
127	Making syngas electrocatalytically using a polypyridyl ruthenium catalyst. Chemical Communications, 2014, 50, 335-337.	4.1	61
128	Synthesis and photophysical characterization of porphyrin and porphyrin–Ru(ii) polypyridyl chromophore–catalyst assemblies on mesoporous metal oxides. Chemical Science, 2014, 5, 3115.	7.4	56
129	Stabilizing chromophore binding on TiO ₂ for long-term stability of dye-sensitized solar cells using multicomponent atomic layer deposition. Physical Chemistry Chemical Physics, 2014, 16, 8615-8622.	2.8	34
130	Controlled Electropolymerization of Ruthenium(II) Vinylbipyridyl Complexes in Mesoporous Nanoparticle Films of TiO ₂ . Angewandte Chemie - International Edition, 2014, 53, 4872-4876.	13.8	29
131	Synthesis and Electrocatalytic Water Oxidation by Electrode-Bound Helical Peptide Chromophore–Catalyst Assemblies. Inorganic Chemistry, 2014, 53, 8120-8128.	4.0	35
132	Single catalyst electrocatalytic reduction of CO ₂ in water to H ₂ +CO syngas mixtures with water oxidation to O ₂ . Energy and Environmental Science, 2014, 7, 4007-4012.	30.8	120
133	Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 6029-6037.	3.1	30
134	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Nanoparticle Metal-Oxide Electrodes in Water by Hydrophobic PMMA Overlayers. Journal of the American Chemical Society, 2014, 136, 13514-13517.	13.7	70
135	Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell. Journal of the American Chemical Society, 2014, 136, 9773-9779.	13.7	80
136	Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8709-8713.	13.8	221
137	Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(III)–Aqua Complex. Journal of the American Chemical Society, 2014, 136, 5531-5534.	13.7	209
138	Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. Journal of the American Chemical Society, 2014, 136, 1734-1737.	13.7	1,001
139	Multiple Pathways in the Oxidation of a NADH Analogue. Inorganic Chemistry, 2014, 53, 4100-4105.	4.0	10
140	Single‣ite Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO ₄ ^{2â^'} as a Proton Acceptor at pHâ€8. Angewandte Chemie - International Edition, 2014, 53, 12226-12230.	13.8	188
141	Atomic Layer Deposition of TiO ₂ on Mesoporous nanoITO: Conductive Core–Shell Photoanodes for Dye-Sensitized Solar Cells. Nano Letters, 2014, 14, 3255-3261.	9.1	71
142	Photoinduced Interfacial Electron Transfer within a Mesoporous Transparent Conducting Oxide Film. Journal of the American Chemical Society, 2014, 136, 2208-2211.	13.7	47
143	One-Electron Activation of Water Oxidation Catalysis. Journal of the American Chemical Society, 2014, 136, 6854-6857.	13.7	51
144	Water Oxidation by an Electropolymerized Catalyst on Derivatized Mesoporous Metal Oxide Electrodes. Journal of the American Chemical Society, 2014, 136, 6578-6581.	13.7	108

#	Article	IF	CITATIONS
145	Electrocatalysis on Oxide-Stabilized, High-Surface Area Carbon Electrodes. ACS Catalysis, 2013, 3, 1850-1854.	11.2	14
146	Stabilizing Small Molecules on Metal Oxide Surfaces Using Atomic Layer Deposition. Nano Letters, 2013, 13, 4802-4809.	9.1	85
147	Soluble Reduced Graphene Oxide Sheets Grafted with Polypyridylruthenium-Derivatized Polystyrene Brushes as Light Harvesting Antenna for Photovoltaic Applications. ACS Nano, 2013, 7, 7992-8002.	14.6	36
148	Synthesis of Phosphonic Acid Derivatized Bipyridine Ligands and Their Ruthenium Complexes. Inorganic Chemistry, 2013, 52, 12492-12501.	4.0	114
149	Rapid energy transfer in non-porous metal–organic frameworks with caged Ru(bpy)32+ chromophores: oxygen trapping and luminescence quenching. Journal of Materials Chemistry A, 2013, 1, 14982.	10.3	62
150	Watching Photoactivation in a Ru(II) Chromophore–Catalyst Assembly on TiO ₂ by Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 24250-24258.	3.1	41
151	Atom Transfer Radical Polymerization Preparation and Photophysical Properties of Polypyridylruthenium Derivatized Polystyrenes. Inorganic Chemistry, 2013, 52, 8511-8520.	4.0	21
152	Stabilization of a Ruthenium(II) Polypyridyl Dye on Nanocrystalline TiO ₂ by an Electropolymerized Overlayer. Journal of the American Chemical Society, 2013, 135, 15450-15458.	13.7	84
153	Solar water splitting in a molecular photoelectrochemical cell. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20008-20013.	7.1	203
154	Spectroscopy and Dynamics of Phosphonate-Derivatized Ruthenium Complexes on TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 812-824.	3.1	43
155	Copper(II) Catalysis of Water Oxidation. Angewandte Chemie - International Edition, 2013, 52, 700-703.	13.8	269
156	A Sensitized Nb ₂ O ₅ Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell. Chemistry of Materials, 2013, 25, 122-131.	6.7	66
157	Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energy and Environmental Science, 2013, 6, 813.	30.8	76
158	Experimental demonstration of radicaloid character in a Ru ^V =O intermediate in catalytic water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3765-3770.	7.1	77
159	Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex. Journal of the American Chemical Society, 2013, 135, 2048-2051.	13.7	429
160	Applications of metal oxide materials in dye sensitized photoelectrosynthesis cells for making solar fuels: let the molecules do the work. Journal of Materials Chemistry A, 2013, 1, 4133.	10.3	115
161	Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy and Environmental Science, 2013, 6, 1240.	30.8	25
162	Redox Mediator Effect on Water Oxidation in a Ruthenium-Based Chromophore–Catalyst Assembly. Journal of the American Chemical Society, 2013, 135, 2080-2083.	13.7	70

#	Article	IF	CITATIONS
163	Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst. Chemical Science, 2013, 4, 3497.	7.4	142
164	[Ru(bpy)3]2+* and other remarkable metal-to-ligand charge transfer (MLCT) excited states. Pure and Applied Chemistry, 2013, 85, 1257-1305.	1.9	244
165	Stabilization of [Ru(bpy) ₂ (4,4′-(PO ₃ H ₂)bpy)] ²⁺ on Mesoporous TiO ₂ with Atomic Layer Deposition of Al ₂ O ₃ . Chemistry of Materials, 2013, 25, 3-5.	6.7	101
166	Accumulation of Multiple Oxidative Equivalents at a Single Site by Cross-Surface Electron Transfer on TiO ₂ . Journal of the American Chemical Society, 2013, 135, 11587-11594.	13.7	68
167	Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20918-20922.	7.1	123
168	Lowâ€Overpotential Water Oxidation by a Surfaceâ€Bound Rutheniumâ€Chromophore–Rutheniumâ€Catalyst Assembly. Angewandte Chemie - International Edition, 2013, 52, 13580-13583.	13.8	72
169	Photoinduced Electron Transfer in a Chromophore–Catalyst Assembly Anchored to TiO ₂ . Journal of the American Chemical Society, 2012, 134, 19189-19198.	13.7	116
170	Role of Proton-Coupled Electron Transfer in the Redox Interconversion between Benzoquinone and Hydroquinone. Journal of the American Chemical Society, 2012, 134, 18538-18541.	13.7	48
171	Selfâ€Assembled Bilayer Films of Ruthenium(II)/Polypyridyl Complexes through Layerâ€byâ€Layer Deposition on Nanostructured Metal Oxides. Angewandte Chemie - International Edition, 2012, 51, 12782-12785.	13.8	118
172	Chemical approaches to artificial photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15560-15564.	7.1	366
173	Photostability of Phosphonate-Derivatized, Ru ^{II} Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 1462-1469.	8.0	157
174	Self-Assembled Bilayers on Indium–Tin Oxide (SAB-ITO) Electrodes: A Design for Chromophore–Catalyst Photoanodes. Inorganic Chemistry, 2012, 51, 8637-8639.	4.0	33
175	Structure–Property Relationships in Phosphonate-Derivatized, Ru ^{II} Polypyridyl Dyes on Metal Oxide Surfaces in an Aqueous Environment. Journal of Physical Chemistry C, 2012, 116, 14837-14847.	3.1	156
176	Nonaqueous Electrocatalytic Oxidation of the Alkylaromatic Ethylbenzene by a Surface Bound Ru ^V (O) Catalyst. ACS Catalysis, 2012, 2, 716-719.	11.2	34
177	The Golden Rule. Application for fun and profit in electron transfer, energy transfer, and excited-state decay. Physical Chemistry Chemical Physics, 2012, 14, 13731.	2.8	144
178	Introduction to <i>ACS Catalysis'</i> Special Issue on Electrocatalysis. ACS Catalysis, 2012, 2, 899-900.	11.2	1
179	Electronic Structure of the Water Oxidation Catalyst <i>cis</i> , <i>cis</i> -[(bpy) ₂ (H ₂ O)Ru ^{III} ORu ^{III} (OH _{2The Blue Dimer. Inorganic Chemistry, 2012, 51, 1345-1358.}	b ₄, ∕¢bpy)<	รฮ b >2
180	Water Oxidation Intermediates Applied to Catalysis: Benzyl Alcohol Oxidation. Journal of the	13.7	79

American Chemical Society, 2012, 134, 3972-3975.

#	Article	IF	CITATIONS
181	Selective Electrocatalytic Reduction of CO ₂ to Formate by Water-Stable Iridium Dihydride Pincer Complexes. Journal of the American Chemical Society, 2012, 134, 5500-5503.	13.7	293
182	The role of proton coupled electron transfer in water oxidation. Energy and Environmental Science, 2012, 5, 7704.	30.8	198
183	An Amide-Linked Chromophore–Catalyst Assembly for Water Oxidation. Inorganic Chemistry, 2012, 51, 6428-6430.	4.0	60
184	Interfacial Dynamics and Solar Fuel Formation in Dye ensitized Photoelectrosynthesis Cells. ChemPhysChem, 2012, 13, 2882-2890.	2.1	41
185	Splitting CO ₂ into CO and O ₂ by a single catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15606-15611.	7.1	168
186	Proton-Coupled Electron Transfer. Chemical Reviews, 2012, 112, 4016-4093.	47.7	1,389
187	Multiple Pathways for Benzyl Alcohol Oxidation by RuVâ•O3+and RuIVâ•O2+. Inorganic Chemistry, 2011, 50, 1167-1169.	4.0	30
	Competing Pathways in the <i>photo-</i> Proton-Coupled Electron Transfer Reduction of		

188

#	Article	IF	CITATIONS
199	Proton-coupled electron transfer at modified electrodes by multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1461-9.	7.1	60
200	Energy Transfer Dynamics in Metalâ~'Organic Frameworks. Journal of the American Chemical Society, 2010, 132, 12767-12769.	13.7	328
201	Integrating proton coupled electron transfer (PCET) and excited states. Coordination Chemistry Reviews, 2010, 254, 2459-2471.	18.8	155
202	Concerted O atom–proton transfer in the O—O bond forming step in water oxidation. Proceedings of the United States of America, 2010, 107, 7225-7229.	7.1	295
203	Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts. Journal of the American Chemical Society, 2010, 132, 1545-1557.	13.7	443
204	Surface Catalysis of Water Oxidation by the Blue Ruthenium Dimer. Inorganic Chemistry, 2010, 49, 3980-3982.	4.0	72
205	Nonaqueous Catalytic Water Oxidation. Journal of the American Chemical Society, 2010, 132, 17670-17673.	13.7	141
206	Application of High Surface Area Tin-Doped Indium Oxide Nanoparticle Films as Transparent Conducting Electrodes. Inorganic Chemistry, 2010, 49, 8179-8181.	4.0	116
207	Catalytic Water Oxidation by Single-Site Ruthenium Catalysts. Inorganic Chemistry, 2010, 49, 1277-1279.	4.0	298
208	Catalytic water oxidation on derivatized nanoITO. Dalton Transactions, 2010, 39, 6950.	3.3	91
209	Catalytic and Surfaceâ€Electrocatalytic Water Oxidation by Redox Mediator–Catalyst Assemblies. Angewandte Chemie - International Edition, 2009, 48, 9473-9476.	13.8	154
210	Single-Site, Catalytic Water Oxidation on Oxide Surfaces. Journal of the American Chemical Society, 2009, 131, 15580-15581.	13.7	234
211	Making Oxygen with Ruthenium Complexes. Accounts of Chemical Research, 2009, 42, 1954-1965.	15.6	788
212	One Site is Enough. Catalytic Water Oxidation by [Ru(tpy)(bpm)(OH ₂)] ²⁺ and [Ru(tpy)(bpz)(OH ₂)] ²⁺ . Journal of the American Chemical Society, 2008, 130, 16462-16463.	13.7	628
213	Mechanisms of Water Oxidation from the Blue Dimer to Photosystem II. Inorganic Chemistry, 2008, 47, 1727-1752.	4.0	385
214	Mediator-assisted water oxidation by the ruthenium "blue dimerâ€ <i>cis</i> , <i>cis</i> -[(bpy) ₂ (H ₂ O)RuORu(OH ₂)(bpy) _{2Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17632-17635.}	ıb ≻]. ∎sup>	4+ к∤s up>.
215	Probing the localized-to-delocalized transition. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 163-175.	3.4	50
216	Tris(Bidentate)Ruthenium(II) Bis[Hexafluorophosphate] Complexes. Inorganic Syntheses, 2007, , 107-110.	0.3	5

#	Article	IF	CITATIONS
217	Spectroscopic Determination of Electron Transfer Barriers and Rate Constants. Advances in Chemical Physics, 2007, , 553-570.	0.3	4
218	Proton-Coupled Electron Transfer. Chemical Reviews, 2007, 107, 5004-5064.	47.7	1,409
219	Electrochemical Oxidation of Water by an Adsorbed μ-Oxo-Bridged Ru Complex. Journal of the American Chemical Society, 2007, 129, 2446-2447.	13.7	83
220	Excited-State Quenching by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2007, 129, 6968-6969.	13.7	104
221	Reactivity of an Adsorbed Ru(VI)â^'Oxo Complex:Â Oxidation of Benzyl Alcohol. Inorganic Chemistry, 2007, 46, 8139-8145.	4.0	29
222	The Role of Free Energy Change in Coupled Electronâ^'Proton Transfer. Journal of the American Chemical Society, 2007, 129, 15098-15099.	13.7	99
223	Oxidation-Reduction and Related Reactions of Metal-Metal Bonds. Progress in Inorganic Chemistry, 2007, , 1-50.	3.0	32
224	The Possible Role of Proton oupled Electron Transfer (PCET) in Water Oxidation by Photosystem II. Angewandte Chemie - International Edition, 2007, 46, 5284-5304.	13.8	501
225	Vibrational and structural mapping of [Os(bpy)3]3+/2+ and [Os(phen)3]3+/2+. Inorganica Chimica Acta, 2007, 360, 1143-1153.	2.4	23
226	Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10322-10327.	7.1	128
227	Electrocatalytic Oxidation of Tyrosine by Parallel Rate-Limiting Proton Transfer and Multisite Electronâ°'Proton Transfer. Journal of the American Chemical Society, 2006, 128, 11020-11021.	13.7	91
228	Application of time-resolved near-infrared spectroscopy (TRNIR) to the metal-to-ligand charge transfer (MLCT) excited state(s) of. Chemical Physics, 2006, 326, 71-78.	1.9	15
229	Chemical Approaches to Artificial Photosynthesis. 2. Inorganic Chemistry, 2005, 44, 6802-6827.	4.0	887
230	Photoelectrochemistry on Rull-2,2â€~-bipyridine-phosphonate-Derivatized TiO2with the I3-/I-and Quinone/Hydroquinone Relays. Design of Photoelectrochemical Synthesis Cells. Inorganic Chemistry, 2005, 44, 2089-2097.	4.0	56
231	[Ru(bpy)2dppz]2+Light-Switch Mechanism in Protic Solvents as Studied through Temperature-Dependent Lifetime Measurementsâ€. Journal of Physical Chemistry A, 2004, 108, 9938-9944.	2.5	161
232	Sensitization and Stabilization of TiO2Photoanodes with Electropolymerized Overlayer Films of Ruthenium and Zinc Polypyridyl Complexes:Â A Stable Aqueous Photoelectrochemical Cell. Inorganic Chemistry, 2004, 43, 1784-1792.	4.0	46
233	Defining Electronic Excited States Using Time-Resolved Infrared Spectroscopy and Density Functional Theory Calculationsâ€. Journal of Physical Chemistry A, 2004, 108, 3527-3536.	2.5	96
234	Mechanism of Metal-to-Ligand Charge Transfer Sensitization of Olefin Trans-to-Cis Isomerization in the fac-[ReI(phen)(CO)3(1,2-bpe)]+ Cation. Journal of Physical Chemistry A, 2003, 107, 4092-4095.	2.5	57

#	Article	IF	CITATIONS
235	Energy Transfer between Ru(II) and Os(II) Polypyridyl Complexes Linked to Polystyreneâ€. Journal of Physical Chemistry A, 2002, 106, 2328-2334.	2.5	39
236	Manipulating the properties of MLCT excited states. Dalton Transactions RSC, 2002, , 3820.	2.3	99
237	Ultrafast Excited-State Energy Migration Dynamics in an Efficient Light-Harvesting Antenna Polymer Based on Ru(II) and Os(II) Polypyridyl Complexes. Journal of the American Chemical Society, 2001, 123, 10336-10347.	13.7	125
238	The Localized-to-Delocalized Transition in Mixed-Valence Chemistry. Chemical Reviews, 2001, 101, 2655-2686.	47.7	966
239	Reversible Osmium(VI) Nitrido to Osmium(II) Ammine Interconversion in Complexes Containing Polypyrazolyl Ligands. Inorganic Chemistry, 2001, 40, 3677-3686.	4.0	34
240	Surface Control of Oxidation by an Adsorbed RuIVâ^'Oxo Complex. Journal of the American Chemical Society, 2001, 123, 5308-5312.	13.7	39
241	Formation and O-Atom Reactivity of the Os(IV)â´`Sulfilimido and Os(IV)â^`Sulfoximido Complexes,cis-/trans-[OsIV(tpy)(Cl)2(NSC6H3Me2)] andcis-/trans-[OsIV(tpy)(Cl)2(NS(O)C6H3Me2)]. Journal of the American Chemical Society, 2001, 123, 9170-9171.	13.7	36
242	Formation and Reactivity of the Osmium(IV)-Cyanoimido Complex [OsIV(bpy)(Cl)3(NCN)]â^'. Angewandte Chemie - International Edition, 2001, 40, 3037-3039.	13.8	41
243	One-Pot Synthesis and Characterization of a Chromophoreâ	4.0	48
244	Electrocatalysis in Photochemically Activated Electropolymerized Thin Films. Inorganic Chemistry, 2000, 39, 1052-1058.	4.0	19
245	Mechanism of Water Oxidation by the μ-Oxo Dimer [(bpy)2(H2O)RullIORullI(OH2)(bpy)2]4+. Journal of the American Chemical Society, 2000, 122, 8464-8473.	13.7	172
246	Step-Scan FTIR Time-Resolved Spectroscopy Study of Excited-State Dipole Orientation in Soluble Metallopolymers. Inorganic Chemistry, 2000, 39, 893-898.	4.0	26
247	Step-Scan Fourier Transform Infrared Absorption Difference Time-Resolved Spectroscopy Studies of Excited State Decay Kinetics and Electronic Structure of Low-Spin d ⁶ Transition Metal Polypyridine Complexes With 10 Nanosecond Time Resolution. Laser Chemistry, 1999, 19, 291-298.	0.5	5
248	Structural and redox chemistry of osmium(III) chloro complexes containing 2,2′:6′,2″-terpyridyl and tris-pyrazolyl borate ligands. Polyhedron, 1999, 18, 1587-1594.	2.2	13
249	Title is missing!. International Journal of Peptide Research and Therapeutics, 1999, 6, 61-69.	0.1	1
250	Kinetics of isomerization for the proline helical forms of two oligoproline redox arrays by circular dichroic spectropolarimetry. International Journal of Peptide Research and Therapeutics, 1999, 6, 61-69.	0.1	4
251	Visible Region Photooxidation on TiO2 with a Chromophoreâ^ Catalyst Molecular Assembly. Inorganic Chemistry, 1999, 38, 4386-4387.	4.0	101
252	Synthesis and Characterization of Dinuclear Ruthenium Complexes with Tetra-2-pyridylpyrazine as a Bridge. Inorganic Chemistry, 1999, 38, 3200-3206.	4.0	71

#	Article	IF	CITATIONS
253	Diffusional Mediation of Surface Electron Transfer on TiO2. Journal of Physical Chemistry B, 1999, 103, 104-107.	2.6	117
254	OsIII(N2)OsIIComplexes at the Localized-to-Delocalized, Mixed-Valence Transition. Journal of the American Chemical Society, 1999, 121, 535-544.	13.7	98
255	Nitrogen atom transfer and redox chemistry of terpyridyl phosphoraniminato complexes of osmium (IV). Inorganica Chimica Acta, 1998, 270, 511-526.	2.4	46
256	Medium Effects on Charge Transfer in Metal Complexes. Chemical Reviews, 1998, 98, 1439-1478.	47.7	617
257	Interpretation of the Time-Resolved Resonance Raman Spectrum of [Ru(phen)3]2+*. Inorganic Chemistry, 1998, 37, 2585-2587.	4.0	29
258	Photochemical Energy Transduction in Helical Proline Arrays. Journal of the American Chemical Society, 1998, 120, 4885-4886.	13.7	80
259	Reactivity of Osmium(VI) Nitrides with the Azide Ion. A New Synthetic Route to Osmium(II) Polypyridyl Complexes. Inorganic Chemistry, 1998, 37, 3610-3619.	4.0	78
260	Electronic Structure in Pyridinium-Based Metal-to-Ligand Charge-Transfer Excited States by Step-Scan FTIR Time-Resolved Spectroscopy. Journal of Physical Chemistry A, 1998, 102, 3042-3047.	2.5	28
261	Vibrational Mapping at the Mixed-Valence, Localized-to-Delocalized Transition. Journal of the American Chemical Society, 1998, 120, 7121-7122.	13.7	45
262	Mid-Infrared Spectrum of [Ru(phen)3]2+*. Inorganic Chemistry, 1998, 37, 3505-3508.	4.0	26
263	Reactivity of Osmium(VI) Nitrides with the Azide Ion. Inorganic Chemistry, 1998, 37, 838-839.	4.0	51
264	Excited State Interactions in Electropolymerized Thin Films of Rull, OsII, and ZnII Polypyridyl Complexes. Journal of Physical Chemistry A, 1997, 101, 4535-4540.	2.5	30
265	Mid-Infrared Spectrum of [Ru(bpy)3]2+*. Journal of the American Chemical Society, 1997, 119, 7013-7018.	13.7	88
266	Localization in trans,trans-[(tpy)(Cl)2OsIII(N2)OsII(Cl)2(tpy)]+ (tpy = 2,2â€~:6â€~,2â€~â€~-Terpyridine). Inorganic Chemistry, 1997, 36, 5678-5679.	4.0	62
267	An Antenna Polymer for Visible Energy Transfer. Journal of the American Chemical Society, 1997, 119, 10243-10244.	13.7	85
268	Calculation of Rate Constants from Spectra. Advances in Chemistry Series, 1997, , 183-198.	0.6	21
269	Solvent-Induced Electron Transfer and Electronic Delocalization in Mixed-Valence Complexes. Spectral Properties. Journal of the American Chemical Society, 1996, 118, 3730-3737.	13.7	48
270	Structural and Resonance Raman Studies of an Oxygen-Evolving Catalyst. Crystal Structure of [(bpy)2(H2O)RullIORuIV(OH)(bpy)2](ClO4)4. Inorganic Chemistry, 1996, 35, 5885-5892.	4.0	55

#	Article	IF	CITATIONS
271	trans-Chromophoreâ^'Quencher Complexes Based on Ruthenium(II). Inorganic Chemistry, 1996, 35, 4575-4584.	4.0	41
272	Coordination Chemistry in Thin Polymeric Films of poly-[Fe(vbpy)2(CN)2],poly-vbpy. Binding and Reduction of [Rh(COD)Cl] and PdCl2. Chemistry of Materials, 1996, 8, 2461-2467.	6.7	8
273	Spatial Electrochromism in Metallopolymeric Films of Ruthenium Polypyridyl Complexes. Chemistry of Materials, 1996, 8, 264-273.	6.7	65
274	Photophysics and Photochemistry of Chromophoreâ^'Quencher Assemblies on Glass and Powdered Silica. Inorganic Chemistry, 1996, 35, 2898-2901.	4.0	32
275	Electropolymerization of Macromers Containing Ruthenium(II) Polypridyl Complexes. Inorganic Chemistry, 1996, 35, 5962-5963.	4.0	22
276	Synthesis and Characterization of Amide-Derivatized, Polypyridyl-Based Metallopolymers. Inorganic Chemistry, 1996, 35, 6299-6307.	4.0	61
277	Contemporary Issues in Electron Transfer Research. The Journal of Physical Chemistry, 1996, 100, 13148-13168.	2.9	1,474
278	Designed Synthesis of Mononuclear Tris(heteroleptic) Ruthenium Complexes Containing Bidentate Polypyridyl Ligands. Inorganic Chemistry, 1995, 34, 6145-6157.	4.0	250
279	Temperature Dependence of Nonradiative Decay. The Journal of Physical Chemistry, 1995, 99, 51-54.	2.9	106
280	Trans-Cis Isomerization in [Os(tpy)(Cl)2(N)]+. Inorganic Chemistry, 1995, 34, 586-592.	4.0	37
281	Molecular-Level Electron Transfer and Excited State Assemblies on Surfaces of Metal Oxides and Glass. Inorganic Chemistry, 1994, 33, 3952-3964.	4.0	216
282	Reversible interconversion between a nitrido complex of osmium(VI) and an ammine complex of osmium(II). Journal of the American Chemical Society, 1990, 112, 5507-5514.	13.7	91
283	Synthesis, structure, and redox properties of the triaqua(tris(1-pyrazolyl)methane)ruthenium(II) cation. Inorganic Chemistry, 1990, 29, 3760-3766.	4.0	48
284	Electrocatalytic reduction of CO2 by a complex of rhenium in thin polymeric films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 259, 217-239.	0.1	115
285	Chemical approaches to artificial photosynthesis. Accounts of Chemical Research, 1989, 22, 163-170.	15.6	1,283
286	Multiple electron oxidation of phenols by an oxo complex of ruthenium(IV). Journal of the American Chemical Society, 1988, 110, 7358-7367.	13.7	80
287	Reactivity of the oxo-bridged ion .muoxobis[bis(2,2'-bipyridine)dioxodiruthenium](3+). Inorganic Chemistry, 1988, 27, 4478-4483.	4.0	72
288	Redox properties of aqua complexes of ruthenium(II) containing the tridentate ligands 2,2':6',2"-terpyridine and tris(1-pyrazolyl)methane. Inorganic Chemistry, 1988, 27, 514-520.	4.0	135

#	Article	IF	CITATIONS
289	Electrocatalytic reduction of carbon dioxide by associative activation. Organometallics, 1988, 7, 238-240.	2.3	90
290	Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium. Inorganic Chemistry, 1988, 27, 4582-4587.	4.0	200
291	Factors affecting cage escape yields following electron-transfer quenching. The Journal of Physical Chemistry, 1987, 91, 1649-1655.	2.9	61
292	Hydrogen-atom transfer between metal complex ions in solution. Journal of the American Chemical Society, 1987, 109, 3287-3297.	13.7	109
293	Application of the energy gap law to excited-state decay of osmium(II)-polypyridine complexes: calculation of relative nonradiative decay rates from emission spectral profiles. The Journal of Physical Chemistry, 1986, 90, 3722-3734.	2.9	578
294	Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2]4+. Journal of the American Chemical Society, 1985, 107, 3855-3864.	13.7	481
295	Electrocatalytic reduction of CO2 based on polypyridyl complexes of rhodium and ruthenium. Journal of the Chemical Society Chemical Communications, 1985, , 796.	2.0	106
296	Electrocatalytic reduction of CO2 at a chemically modified electrode. Journal of the Chemical Society Chemical Communications, 1985, , 1416.	2.0	121
297	Instability of the oxidation catalysts ([(bpy)2(py)Ru(O)]2+) and oxo(1,10-phenanthroline)(2,2',2"-terpyridine) ruthenium(2+) ([(trpy)(phen)Ru(O)]2+) in basic solution. Inorganic Chemistry, 1985, 24, 3784-3791.	4.0	45
298	Redox Pathways: Applications in Catalysis. Journal of the Electrochemical Society, 1984, 131, 221C-228C.	2.9	105
299	Concerning the electronic structure of the ions M(bpy)33+ (M = Fe, Ru, Os; bpy = 2,2'-bipyridine). Inorganic Chemistry, 1983, 22, 1614-1616.	4.0	71
300	Synthetic and mechanistic investigations of the reductive electrochemical polymerization of vinyl-containing complexes of iron(II), ruthenium(II), and osmium(II). Inorganic Chemistry, 1983, 22, 2151-2162.	4.0	143
301	Electronic structure in the intervalence transfer absorption band of a mixed-valence dimer. Journal of the American Chemical Society, 1983, 105, 4303-4309.	13.7	75
302	Excited-State Electron Transfer. ACS Symposium Series, 1983, , 157-176.	0.5	5
303	Transfer of Solution Reactivity Properties to Electrode Surfaces. ACS Symposium Series, 1982, , 133-158.	0.5	3
304	Optical Charge-Transfer Transitions. ACS Symposium Series, 1982, , 137-150.	0.5	1
305	An Excited State Photoelectrochemical Cell for the Production of O2Based on Oxidative Quenching of Ru(bpy)2+3. Israel Journal of Chemistry, 1982, 22, 153-157.	2.3	5
306	Concerning the absorption spectra of the ions M(bpy)32+ (M = Fe, Ru, Os; bpy = 2,2'-bipyridine). Inorganic Chemistry, 1982, 21, 3967-3977.	4.0	320

#	Article	IF	CITATIONS
307	Catalytic oxidation of water by an oxo-bridged ruthenium dimer. Journal of the American Chemical Society, 1982, 104, 4029-4030.	13.7	876
308	Chemically catalyzed net electrochemical oxidation of alcohols, aldehydes, and unsaturated hydrocarbons using the system (trpy)(bpy)Ru(OH2)2+/(trpy)(bpy)RuO2+. Journal of the American Chemical Society, 1980, 102, 2310-2312.	13.7	158
309	Highly luminescent polypyridyl complexes of osmium(II). Journal of the American Chemical Society, 1980, 102, 7383-7385.	13.7	140
310	Reduction of nitrate ion by (bpy)2pyRu(OH2)2+. Journal of the American Chemical Society, 1979, 101, 1326-1328.	13.7	19
311	Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes. Journal of the American Chemical Society, 1979, 101, 4815-4824.	13.7	455
312	DESIGN AND SYNTHESIS OF MIXED-VALENCE COMPLEXES. Annals of the New York Academy of Sciences, 1978, 313, 496-508.	3.8	17
313	Oxobis(2,2'-bipyridine)pyridineruthenium(IV) ion, [(bpy)2(py)Ru:O]2+. Journal of the American Chemical Society, 1978, 100, 3601-3603.	13.7	116
314	Measurement of rates of electron transfer between tris(2,2'-bipyridine)ruthenium(3+) and tris(1,10-phenanthroline)iron(2+) ions and between tris(1,10-phenanthroline)ruthenium(3+) and tris(2,2'-bipyridine)ruthenium(2+) ions by differential excitation flash photolysis. Journal of the American Chemical Society, 1977, 99, 2468-2473.	13.7	98
315	Electron transfer quenching of excited states of metal complexes. Journal of the American Chemical Society, 1976, 98, 286-287.	13.7	100
316	Electron Transfer Reactions Induced by Excited State Quenching. Israel Journal of Chemistry, 1976, 15, 200-205.	2.3	22
317	Kinetic relaxation measurement of rapid electron transfer reactions by flash photolysis. Conversion of light energy into chemical energy using the tris(2,2'-bipyridine)ruthenium(3+)-tris(2,2'-bipyridine)ruthenium(2+*) couple. Journal of the American Chemical Society, 1975, 97, 4781-4782.	13.7	74
318	Excited-State Electron Transfer. Progress in Inorganic Chemistry, 0, , 389-440.	3.0	108