List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5747744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable Submicron Channel Fabrication by Suspended Nanofiber Lithography for Shortâ€Channel Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, 2109254.	7.8	9
2	<scp>Twoâ€Dimensional</scp> Cathode Materials for Aqueous Rechargeable <scp>Zincâ€Ion</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2022, 40, 973-988.	2.6	10
3	Research Progress of Flexible Piezoresistive Sensors Prepared by Solution-Based Processing. Acta Chimica Sinica, 2022, 80, 214.	0.5	1
4	High Energy, Long Cycle, and Superior Low Temperature Performance Aqueous Na–Zn Hybrid Batteries Enabled by a Low-Cost and Protective Interphase Film-Forming Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 11425-11434.	4.0	18
5	Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets. Micromachines, 2022, 13, 956.	1.4	7
6	High-mobility patternable MoS2 percolating nanofilms. Nano Research, 2021, 14, 2255.	5.8	27
7	Recent Advances on Conductive 2D Covalent Organic Frameworks. Small, 2021, 17, e2006043.	5.2	77
8	Two-step colloidal synthesis of micron-scale Bi2O2Se nanosheets and their electrostatic assembly for thin-film photodetectors with fast response. Chinese Chemical Letters, 2021, 32, 3099-3104.	4.8	10
9	Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Research, 2021, 14, 4680-4688.	5.8	37
10	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. MRS Bulletin, 2021, 46, 576-587.	1.7	5
11	Self-Optimized Metal–Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation. ACS Catalysis, 2021, 11, 7132-7143.	5.5	77
12	Earth-abundant magnetite with carbon coatings as reversible cathodes for stretchable zinc-ion batteries. Journal of Energy Chemistry, 2021, 62, 552-562.	7.1	16
13	Elastomeric Nanodielectrics for Soft and Hysteresisâ€Free Electronics. Advanced Materials, 2021, 33, e2104761.	11.1	7
14	Selfâ€Limiting Assembly Approaches for Nanoadditive Manufacturing of Electronic Thin Films and Devices. Advanced Materials, 2020, 32, e1806480.	11.1	23
15	Highâ€Resolution Printable and Elastomeric Conductors from Strainâ€Adaptive Assemblies of Metallic Nanoparticles with Low Aspect Ratios. Small, 2020, 16, 2004793.	5.2	13
16	Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors. Materials Technology, 2020, , 1-10.	1.5	10
17	Nanoadditive Manufacturing: Selfâ€Limiting Assembly Approaches for Nanoadditive Manufacturing of Electronic Thin Films and Devices (Adv. Mater. 3/2020). Advanced Materials, 2020, 32, 2070021.	11.1	0
18	Copper nanomaterials and assemblies for soft electronics. Science China Materials, 2019, 62, 1679-1708.	3.5	22

#	Article	IF	CITATIONS
19	Electronics from solution-processed 2D semiconductors. Journal of Materials Chemistry C, 2019, 7, 12835-12861.	2.7	24
20	Carbon Layer Coated Ni ₃ S ₂ /MoS ₂ Nanohybrids as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ChemElectroChem, 2019, 6, 5603-5609.	1.7	22
21	Fully Inkjet-Printed, Mechanically Flexible MoS ₂ Nanosheet Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 5675-5681.	4.0	100
22	Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordination Chemistry Reviews, 2019, 388, 172-201.	9.5	192
23	Metal‣ayer Assisted Growth of Ultralong Quasiâ€2D MOF Nanoarrays on Arbitrary Substrates for Accelerated Oxygen Evolution. Small, 2019, 15, e1906086.	5.2	54
24	Metal–Organic Gelâ€Đerived Fe <i>_x</i> O <i>_y</i> /Nitrogenâ€Đoped Carbon Films for Enhanced Lithium Storage. Small, 2019, 15, e1804058.	5.2	31
25	Lithium-Ion Batteries: Metal-Organic Gel-Derived Fe x O y /Nitrogen-Doped Carbon Films for Enhanced Lithium Storage (Small 3/2019). Small, 2019, 15, 1970018.	5.2	3
26	Structure and Emission Modulation of a Series of Cd(II) Luminescent Coordination Polymers through Guest Dependent Donor–Acceptor Interaction. Crystal Growth and Design, 2019, 19, 1391-1398.	1.4	27
27	Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage. Small, 2018, 14, e1800639.	5.2	46
28	Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. Nature Communications, 2018, 9, 181.	5.8	28
29	A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics. Nanoscale, 2018, 10, 20096-20107.	2.8	38
30	Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform. Advanced Materials, 2018, 30, e1804715.	11.1	132
31	Nitrogenâ€Doped Wrinkled Carbon Foils Derived from MOF Nanosheets for Superior Sodium Storage. Advanced Energy Materials, 2018, 8, 1801515.	10.2	158
32	Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1383-1398.	1.4	6
33	Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose. Chemistry of Materials, 2017, 29, 2332-2340.	3.2	134
34	Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Science China Materials, 2017, 60, 937-946.	3.5	27
35	Branched Aramid Nanofibers. Angewandte Chemie - International Edition, 2017, 56, 11744-11748.	7.2	140
36	Branched Aramid Nanofibers. Angewandte Chemie, 2017, 129, 11906-11910.	1.6	14

#	Article	IF	CITATIONS
37	Scanning Probe Nanopatterning and Layerâ€byâ€Layer Thinning of Black Phosphorus. Advanced Materials, 2017, 29, 1604121.	11.1	62
38	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	11.1	98
39	Transistors: Layerâ€byâ€Layer Assembled 2D Montmorillonite Dielectrics for Solutionâ€Processed Electronics (Adv. Mater. 1/2016). Advanced Materials, 2016, 28, 203-203.	11.1	2
40	Layerâ€byâ€Layer Assembled 2D Montmorillonite Dielectrics for Solutionâ€Processed Electronics. Advanced Materials, 2016, 28, 63-68.	11.1	72
41	Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11688-11693.	3.3	206
42	Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. Nano Letters, 2016, 16, 2981-2987.	4.5	139
43	Highâ€Performance Solidâ€State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Advanced Energy Materials, 2016, 6, 1600909.	10.2	139
44	Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS Nano, 2016, 10, 3248-3256.	7.3	104
45	Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets. Nano Letters, 2015, 15, 7029-7036.	4.5	101
46	Solution-processed carbon nanotube thin-film complementary static random access memory. Nature Nanotechnology, 2015, 10, 944-948.	15.6	184
47	Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies. Nano Letters, 2014, 14, 6799-6810.	4.5	61
48	Shape-Morphing Nanocomposite Origami. Langmuir, 2014, 30, 5378-5385.	1.6	40
49	Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500, 59-63.	13.7	729
50	Thermodynamic and Structural Insights into Nanocomposites Engineering by Comparing Two Materials Assembly Techniques for Graphene. ACS Nano, 2013, 7, 4818-4829.	7.3	122
51	Pseudonegative Thermal Expansion and the State of Water in Graphene Oxide Layered Assemblies. ACS Nano, 2012, 6, 8357-8365.	7.3	136
52	Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Devices. Nano Letters, 2012, 12, 3391-3398.	4.5	73
53	Spontaneous Self-Organization Enables Dielectrophoresis of Small Nanoparticles and Formation of Photoconductive Microbridges. Journal of the American Chemical Society, 2011, 133, 10688-10691.	6.6	18
54	Dispersions of Aramid Nanofibers: A New Nanoscale Building Block. ACS Nano, 2011, 5, 6945-6954.	7.3	553

#	Article	IF	CITATIONS
55	Transparent Conductors from Carbon Nanotubes LBL-Assembled with Polymer Dopant with Ï€â~'Ï€ Electron Transfer. Journal of the American Chemical Society, 2011, 133, 7450-7460.	6.6	82
56	Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions. Nanoscale, 2010, 2, 2084.	2.8	34
57	Transparent Conductors from Layer-by-Layer Assembled SWNT Films: Importance of Mechanical Properties and a New Figure of Merit. ACS Nano, 2010, 4, 3725-3734.	7.3	135
58	E-Textile Conductors and Polymer Composites for Conformal Lightweight Antennas. IEEE Transactions on Antennas and Propagation, 2010, 58, 2732-2736.	3.1	101
59	Single-Walled Carbon Nanotubes Spontaneous Loading into Exponentially Grown LBL Films. Chemistry of Materials, 2009, 21, 4397-4400.	3.2	23
60	Highly Ductile Multilayered Films by Layer-by-Layer Assembly of Oppositely Charged Polyurethanes for Biomedical Applications. Langmuir, 2009, 25, 14093-14099.	1.6	32
61	Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness, ACS Nano, 2009, 3, 1711-1722	7.3	141