
Charles F Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5747717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Avian eggshell coloration predicts shell-matrix protoporphyrin content. Canadian Journal of Zoology, 2022, 100, 77-81.	1.0	2
2	Sex-specific effects of hatching order on nestling baseline corticosterone in a wild songbird. General and Comparative Endocrinology, 2022, 319, 113964.	1.8	0
3	Female birds monitor the activity of their mates while brooding nest-bound young. Animal Cognition, 2021, 24, 613-628.	1.8	2
4	Connecting the dots: avian eggshell pigmentation, female condition and paternal provisioning effort. Biological Journal of the Linnean Society, 2020, 130, 114-127.	1.6	7
5	Posthatching Parental Care and Offspring Growth Vary with Maternal Corticosterone Level in a Wild Bird Population. Physiological and Biochemical Zoology, 2019, 92, 496-504.	1.5	8
6	Perceived threat to paternity reduces likelihood of paternal provisioning in house wrens. Behavioral Ecology, 2019, 30, 1336-1343.	2.2	7
7	Condition-Dependent Begging Elicits Increased Parental Investment in a Wild Bird Population. American Naturalist, 2019, 193, 725-737.	2.1	19
8	Beak abnormality hinders provisioning ability and reduces body condition of a female House Wren (Troglodytes aedon). Wilson Journal of Ornithology, 2019, 131, 128.	0.2	2
9	Pre―and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and survival of nestling house wrens. Functional Ecology, 2018, 32, 1995-2007.	3.6	29
10	Experimental cross-fostering of eggs reveals effects of territory quality on reproductive allocation. Behavioral Ecology, 2018, 29, 1190-1198.	2.2	2
11	Experimental manipulation of incubation period reveals no apparent costs of incubation in house wrens. Animal Behaviour, 2018, 137, 169-177.	1.9	17
12	Maternal Natal Environment and Breeding Territory Predict the Condition and Sex Ratio of Offspring. Evolutionary Biology, 2017, 44, 11-20.	1.1	18
13	Size of nestâ€cavity entrance influences male attractiveness and paternal provisioning in house wrens. Journal of Zoology, 2017, 302, 1-7.	1.7	3
14	Behavioral Plasticity in Response to Perceived Predation Risk in Breeding House Wrens. Evolutionary Biology, 2017, 44, 227-239.	1.1	21
15	Interactive effects of parental age on offspring fitness and ageâ€assortative mating in a wild bird. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 302-310.	1.9	13
16	Pre―and Postnatal Effects of Corticosterone on Fitnessâ€Related Traits and the Timing of Endogenous Corticosterone Production in a Songbird. Journal of Experimental Zoology, 2016, 325, 347-359.	1.2	19
17	No effect of blood sampling or phytohaemagglutinin injection on postfledging survival in a wild songbird. Ecology and Evolution, 2016, 6, 3107-3114.	1.9	8
18	Elevated corticosterone during egg production elicits increased maternal investment and promotes nestling growth in a wild songbird. Hormones and Behavior, 2016, 83, 6-13.	2.1	40

CHARLES F THOMPSON

#	Article	IF	CITATIONS
19	Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird. Ecology, 2016, 97, 2880-2891.	3.2	43
20	Increased extra-pair paternity in broods of aging males and enhanced recruitment of extra-pair young in a migratory bird. Evolution; International Journal of Organic Evolution, 2015, 69, 2533-2541.	2.3	18
21	Immune Activation Generates Corticosterone-Mediated Terminal Reproductive Investment in a Wild Bird. American Naturalist, 2015, 185, 769-783.	2.1	47
22	Massâ€based condition measures and their relationship with fitness: in what condition is condition?. Journal of Zoology, 2015, 296, 1-5.	1.7	39
23	Persistent sexâ€byâ€environment effects on offspring fitness and sexâ€ratio adjustment in a wild bird population. Journal of Animal Ecology, 2015, 84, 473-486.	2.8	36
24	Aggressive displays by male House Wrens are composed of multiple components that predict attack. Journal of Field Ornithology, 2014, 85, 56-62.	0.5	14
25	Genetic and environmental variation in condition, cutaneous immunity, and haematocrit in house wrens. BMC Evolutionary Biology, 2014, 14, 242.	3.2	21
26	Offspring sex ratio varies with clutch size for female house wrens induced to lay supernumerary eggs. Behavioral Ecology, 2014, 25, 165-171.	2.2	12
27	Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology, 2014, 95, 3027-3034.	3.2	87
28	Food Supplementation Fails to Reveal a Trade-Off between Incubation and Self-Maintenance in Female House Wrens. PLoS ONE, 2014, 9, e106260.	2.5	24
29	Sibling Cooperation Influences the Age of Nest Leaving in an Altricial Bird. American Naturalist, 2013, 181, 775-786.	2.1	37
30	Aggressiveness, Boldness and Parental Food Provisioning in Male House Wrens (<i><scp>T</scp>roglodytes aedon</i>). Ethology, 2012, 118, 984-993.	1.1	40
31	Reproductive allocation in female house wrens is not influenced by experimentally altered male attractiveness. Behavioral Ecology and Sociobiology, 2012, 66, 1247-1258.	1.4	14
32	No Effect of Carotenoid Supplementation on Phytohemagglutinin Response or Body Condition of Nestling House Wrens. Physiological and Biochemical Zoology, 2012, 85, 21-28.	1.5	6
33	Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren () Tj ETQq1 2891-2898.	1 0.78431 2.6	14 rgBT /O∨ 47
34	Experimentally increased egg production constrains future reproduction of female house wrens. Animal Behaviour, 2012, 83, 495-500.	1.9	25
35	Adaptive Sex Allocation in Relation to Hatching Synchrony and Offspring Quality in House Wrens. American Naturalist, 2011, 177, 617-629.	2.1	37
36	Turning a deaf ear: a test of the manipulating androgens hypothesis in house wrens. Animal Behaviour, 2011, 81, 113-120.	1.9	38

CHARLES F THOMPSON

#	Article	IF	CITATIONS
37	Evidence for heterozygote instability in microsatellite loci in house wrens. Biology Letters, 2011, 7, 127-130.	2.3	9
38	Experimentally increased <i>in ovo</i> testosterone leads to increased plasma bactericidal activity and decreased cutaneous immune response in nestling house wrens. Journal of Experimental Biology, 2011, 214, 2778-2782.	1.7	19
39	Male quality influences male provisioning in house wrens independent of attractiveness. Behavioral Ecology, 2010, 21, 1156-1164.	2.2	40
40	Cutaneous Immune Activity, but Not Innate Immune Responsiveness, Covaries with Mass and Environment in Nestling House Wrens (<i>Troglodytes aedon</i>). Physiological and Biochemical Zoology, 2010, 83, 512-518.	1.5	28
41	The Design of Artificial Nestboxes for the Study of Secondary Hole-Nesting Birds: A Review of Methodological Inconsistencies and Potential Biases. Acta Ornithologica, 2010, 45, 1-26.	0.5	274
42	Extra-pair young in house wren broods are more likely to be male than female. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2285-2289.	2.6	30
43	Female house wrens (<i>Troglodytes aedon</i>) increase the size, but not immunocompetence, of their offspring through extraâ€pair mating. Molecular Ecology, 2008, 17, 3697-3706.	3.9	29
44	Why Are Incubation Periods Longer in the Tropics? A Commonâ€Garden Experiment with House Wrens Reveals It Is All in the Egg. American Naturalist, 2008, 171, 532-535.	2.1	38
45	Mate choice in house wrens: nest cavities trump male characteristics. Behaviour, 2006, 143, 253-271.	0.8	38
46	Clutch size and the costs of incubation in the house wren. Behavioral Ecology, 2006, 17, 849-856.	2.2	42
47	Addition of arthropod cocoons to house wren nests is correlated with delayed pairing. Behavioral Ecology, 2005, 16, 1-7.	2.2	8
48	SOURCES OF EGG-SIZE VARIATION IN HOUSE WRENS (TROGLODYTES AEDON): ONTOGENETIC AND ENVIRONMENTAL COMPONENTS. Auk, 2002, 119, 800.	1.4	25
49	Male-Biased Offspring Sex Ratio in the House Wren. Condor, 2002, 104, 881-885.	1.6	9
50	Sources of Egg-Size Variation in House Wrens (Troglodytes aedon): Ontogenetic and Environmental Components. Auk, 2002, 119, 800-807.	1.4	2
51	Hatching asynchrony and maternal androgens in egg yolks of House Wrens. Journal of Avian Biology, 2001, 32, 26-30.	1.2	30
52	FEMALE CONDITION: A PREDICTOR OF HATCHING SYNCHRONY IN THE HOUSE WREN?. Condor, 2001, 103, 587.	1.6	8
53	Food-supplementation does not override the effect of egg mass on fitness-related traits of nestling house wrens. Journal of Animal Ecology, 2000, 69, 690-702.	2.8	42
54	Ectoparasite Behavior and its Effects on Avian Nest-Site Selection: Corrections and Comment. Annals of the Entomological Society of America, 1999, 92, 108-109.	2.5	1

CHARLES F THOMPSON

#	Article	IF	CITATIONS
55	Fitness–related consequences of egg mass in nestling house wrens. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1253-1258.	2.6	115
56	Social mating system and reproductive success in house wrens. Behavioral Ecology, 1998, 9, 43-48.	2.2	26
57	DO POTENTIALLY VIRULENT MITES AFFECT HOUSE WREN (TROGLODYTES AEDON) REPRODUCTIVE SUCCESS?. Ecology, 1998, 79, 1797-1806.	3.2	35
58	Social mating system affects the frequency of extra-pair paternity in house wrens. Animal Behaviour, 1997, 54, 1089-1105.	1.9	65
59	MASS LOSS IN BREEDING HOUSE WRENS:EFFECTS OF FOOD SUPPLEMENTS. Ecology, 1997, 78, 2512-2523.	3.2	26
60	House Wrens Troglodytes aedon and Nest-Dwelling Ectoparasites: Mite Population Growth and Feeding Patterns. Journal of Avian Biology, 1996, 27, 273.	1.2	27
61	Nectar robbing in Blue Tits <i>Parus caeruleus:</i> failure of a novel feeding trait to spread. Ibis, 1996, 138, 552-553.	1.9	10
62	Distribution of parental effort between nestlings of European starlings: Runting and a spoiltâ€brat strategy. New Zealand Journal of Zoology, 1995, 22, 331-338.	1.1	1
63	Avian Hatching Asynchrony: Brood Classification Based on Discriminant Function Analysis of Nestling Masses. Ecology, 1993, 74, 1191-1196.	3.2	6
64	Hatching asynchrony in the house wren, Troglodytes aedon: a test of the brood-reduction hypothesis. Behavioral Ecology, 1992, 3, 76-83.	2.2	52
65	House wrens do not prefer clean nestboxes. Animal Behaviour, 1991, 42, 1022-1024.	1.9	32
66	Body Mass and Lipid Content at Nest-Leaving of European Starlings in New Zealand. Ornis Scandinavica, 1988, 19, 1.	1.0	8
67	Natal and Breeding Dispersal in House Wrens (Troglodytes aedon). Auk, 1988, 105, 480-491.	1.4	148
68	Evolution of Clutch Size: An Experimental Test in the House Wren (Troglodytes aedon). Journal of Animal Ecology, 1987, 56, 99.	2.8	70
69	Site Fidelity and Habitat Quality as Determinants of Settlement Pattern in Male Painted Buntings. Condor, 1986, 88, 206.	1.6	110
70	Effects of Supplemental Food on a Microtus pennsylvanicus Population in Central Illinois. Journal of Animal Ecology, 1983, 52, 127.	2.8	63
71	The influence of foraging benefits on association of cattle egrets (Bubulcus ibis) with cattle. Oecologia, 1982, 52, 167-170.	2.0	15
72	Nest Discovery and Selection by Brown-Headed Cowbirds. Condor, 1981, 83, 268.	1.6	24

#	Article	IF	CITATIONS
73	Postjuvenal Molt in the White-Eyed Vireo. Bird-Banding, 1973, 44, 63.	0.1	1
74	Population Biology of the Yellowâ€Breasted Chat (Icteria Virens L.) in Southern Indiana. Ecological Monographs, 1973, 43, 145-171.	5.4	88
75	Notes on the Birds of the Northeast Cape of St. Lawrence Island and of the Punuk Islands, Alaska. Condor, 1967, 69, 411-419.	1.6	4