Sylvia Saalfeld, née Glasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5747146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurgical Focus, 2019, 47, E15.	1.0	60
2	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Phase I: Segmentation. Cardiovascular Engineering and Technology, 2018, 9, 565-581.	0.7	59
3	Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. Neuroradiology, 2020, 62, 1627-1635.	1.1	35
4	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1795-1804.	1.7	29
5	Semiautomatic neck curve reconstruction for intracranial aneurysm rupture risk assessment based on morphological parameters. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1781-1793.	1.7	22
6	Vertebral body segmentation in wide range clinical routine spine MRI data. Computer Methods and Programs in Biomedicine, 2018, 155, 93-99.	2.6	21
7	Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1805-1813.	1.7	18
8	Rupture risk assessment for multiple intracranial aneurysms: why there is no need for dozens of clinical, morphological and hemodynamic parameters. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642096615.	1.5	16
9	MedmeshCNN - Enabling meshcnn for medical surface models. Computer Methods and Programs in Biomedicine, 2021, 210, 106372.	2.6	13
10	Rupture Status Classification of Intracranial Aneurysms Using Morphological Parameters. , 2018, , .		12
11	Aneurysm Wall Enhancement Is Associated With Decreased Intrasaccular IL-10 and Morphological Features of Instability. Neurosurgery, 2021, 89, 664-671.	0.6	12
12	Hemodynamic Data Assimilation in aÂSubject-specific Circle of Willis Geometry. Clinical Neuroradiology, 2021, 31, 643-651.	1.0	11
13	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): uncertainty quantification of geometric rupture risk parameters. BioMedical Engineering OnLine, 2019, 18, 35.	1.3	9
14	A comparison of input devices for precise interaction tasks in VR-based surgical planning and training. Computers in Biology and Medicine, 2022, 145, 105429.	3.9	9
15	Interactive exploration of a 3D intracranial aneurysm wall model extracted from histologic slices. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 99-107.	1.7	6
16	Complex wall modeling for hemodynamic simulations of intracranial aneurysms based on histologic images. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 597-607.	1.7	6
17	Multi-segmental spine image registration supporting image-guided interventions of spinal metastases. Computers in Biology and Medicine, 2018, 102, 16-20.	3.9	5
18	Suitability of intravascular imaging for assessment of cerebrovascular diseases. Neuroradiology, 2019, 61, 1093-1101.	1.1	5

#	Article	IF	CITATIONS
19	VR-based training of craniotomy for intracranial aneurysm surgery. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 449-456.	1.7	5
20	Can Endovascular Treatment of Fusiform Intracranial Aneurysms Restore the Healthy Hemodynamic Environment?–A Virtual Pilot Study. Frontiers in Neurology, 2021, 12, 771694.	1.1	4
21	Combining visual analytics and case-based reasoning for rupture risk assessment of intracranial aneurysms. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1525-1535.	1.7	3
22	Distance and force visualisations for improved simulation of intracranial aneurysm clipping. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1297-1304.	1.7	3
23	Virtual embolization for treatment support of intracranial AVMs using an interactive desktop and VR application. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 2119-2127.	1.7	3
24	Fluid-structure interaction in intracranial vessel walls: The role of patient-specific wall thickness. Current Directions in Biomedical Engineering, 2018, 4, 587-590.	0.2	2
25	VICTORIA: VIrtual neck Curve and True Ostium Reconstruction of Intracranial Aneurysms. Cardiovascular Engineering and Technology, 2021, 12, 454-465.	0.7	2
26	Definition and extraction of 2D shape indices of intracranial aneurysm necks for rupture risk assessment. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1977-1984.	1.7	2
27	Interactive Visualization of Cerebral Blood Flow for Arteriovenous Malformation Embolisation. Informatik Aktuell, 2021, , 36-41.	0.4	1
28	An interactive tool for identifying patient subgroups based on arbitrary characteristics for medical research. Current Directions in Biomedical Engineering, 2021, 7, 43-46.	0.2	1
29	Tissue segmentation in histologic images of intracranial aneurysm wall. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2021, 26, 101307.	0.2	1
30	Shrinking tube mesh: combined mesh generation and smoothing for pathologic vessels. Current Directions in Biomedical Engineering, 2020, 6, .	0.2	1
31	Self-calibration of C-arm imaging system using interventional instruments during an intracranial biplane angiography. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1355-1366.	1.7	1
32	A Comparison of Input Devices for Precise Interaction Tasks in VR-based Surgical Planning and Training. , 2022, , .		1
33	Poster session 22: Imaging and image processing V. Biomedizinische Technik, 2017, 62, .	0.9	0
34	Facial Feature Removal for Anonymization of Neurological Image Data. Current Directions in Biomedical Engineering, 2021, 7, 130-134.	0.2	0
35	A novel tool for monitoring and assessing the outcome of thermal ablations of hepatic lesions. Current Directions in Biomedical Engineering, 2021, 7, 72-75.	0.2	0
36	Wall enhancement segmentation for intracranial aneurysm. Current Directions in Biomedical Engineering, 2020, 6, .	0.2	0

#	Article	IF	CITATIONS
37	Automatic Segmentation of Necrosis Zones after Radiofrequency Ablation of Spinal Metastases. , 2020, , .		0
38	Image-based Blood Flow Analysis of Popliteal Artery Aneurysms – an Interdisciplinary Pilot Study. Current Directions in Biomedical Engineering, 2021, 7, 891-894.	0.2	0
39	Hemodynamics of anterior communicating artery aneurysms using combined imaging of the anterior circulation. Current Directions in Biomedical Engineering, 2021, 7, 887-890.	0.2	0